The CRYSTRAN HANDBOOK of Infra-Red and Ultra-Violet OPTICAL MATERIALS

PUBLISHED BY CRYSTRAN LTD

Unit 1, Broom Road Business Park, Poole, Dorset, BH12 4PA, UK

© Crystran Ltd, 2018 First published 1986 First revision 1988 Reprinted 1991 Reprinted 1992 Second revision 2008 Third revision 2016 Reprinted 2018

Produced in England

The sale of materials described in this Handbook will be covered by the General Conditions of Sale of Crystran Ltd. No responsibility can be taken for inaccuracies in data.

A COMPREHENSIVE SOURCE ACROSS THE SPECTRUM

This handbook is published by Crystran Ltd as a service to optics professionals. It is designed to help you determine the best material for your application.

The materials that we work with are mainly crystal or innovative glasses used for their particular transmission properties. We also have a great deal of experience within the company of the crystal growth techniques used in making the raw materials.

If your requirement is for prototypes or for production quantities our technical team are happy to help.

For more information on our materials and services, please contact us: Tel: +44 (0) 1202 307650 Fax: +44 (0) 1202 307651 Email: sales@crystran.co.uk Website: www.crystran.co.uk

> Find us on Facebook for the latest news of our activities. Trade shows, visits, and small triumphs.

INDEX

MATERIALS DATA

Ltd

7

9 9

10

10

Introduction to the Handbook	6	Introduction to Crystran
Test Equipment	8	Polishing Specifications
Lens Tooling	9	Hot Forging
Bubbles and Flaws	10	Stria
Flatness	10	Parallelism
Lens Centration	10	Cosmetic Finish
Stresses	12	Chamfers
Optic Axis (Birefringence)	13	Reflection Loss
Brewster Angle	14	Critical Angle
Reststrahlen	15	Metrological Wavelength
Hardness Scales	17	Elastic Coefficients
Definitions	18	Beam Deviation
SI Units Prefixes	19	Conversion Tables
Pressure Conversions	20	Atmospheric Pressure

21

22 25

Formulae

Specific Heat

Lens Formulae	
Hexagon, Torus	

Pressure Window Calculation	26
Aspheric lens Design	28
Guide to Cleaning Optics	29
Data Sheet Links	30

Comparison of Data

Transmission	31
Refractive Index	32
Melting Point	33
Density,	34
Expansion Coefficient,	35
Knoop Hardness	36
Rupture Modulus	37

	-
Cosmetic Finish	11
Chamfers	13
Reflection Loss	14
Critical Angle	14
Metrological Wavelengths	16
Elastic Coefficients	17
Beam Deviation	18
Conversion Tables	19
Atmospheric Pressure	21
Thermal Conductivity	21

Sphere, Circle	23
Ellipse, Parabola, Pyramid, Cone	26

INDEX

MATERIALS DATA

Material Data

Barium Fluoride (BaF₂)	38	Cadmium Telluride (CdTe)	40
Caesium Bromide (CsBr)	42	Caesium Iodide (CsI)	44
Calcite (CaCO₃)	46	Calcium Fluoride (CaF₂)	48
Diamond (Cubic Carbon)	50	Gallium Arsenide (GaAs)	52
GaLaS glass	54	Germanium (Ge)	56
KRS5 (TIBrI)	58	KRS6 (TIBrCI)	60
Lanthanum Fluoride (LaF₃)	62	Lead Fluoride (PbF ₂)	64
Lithium Fluoride (LiF)	66	Magnesium Fluoride (MgF ₂)	68
Magnesium Oxide (MgO)	70	Optical Glass (NBK7 & B270)	72
Potassium Bromide (KBr)	74	Potassium Chloride (KCl)	76
Potassium Iodide (KI)	78	Quartz Crystal (SiO ₂)	80
Rubidium Bromide (RbBr)	82	Rubidium Chloride (RbCl)	84
Rubidium Iodide (RbI)	86	Rutile (TiO ₂)	88
Sapphire (Al₂O₃)	90	Silica Glass (SiO ₂)	92
Silicon (Si)	94	Silver Bromide (AgBr)	96
Silver Chloride (AgCl)	98	Sodium Chloride (NaCL)	100
Sodium Fluoride (NaF)	102	Strontium Fluoride (SrF ₂)	104
Thallium Bromide (TlBr)	106	Thallium Chloride (TICI)	108
YAG	110	Zinc Selenide (ZnSe)	112
Zinc Sulphide FLIR (ZnS)	114	Zinc Sulphide MS (ZnS)	116

Fundamental Constants

118

INTRODUCTION TO THE HANDBOOK

MATERIALS DATA

This Handbook, as well as being a catalogue of the range of materials and production capabilities available to you at Crystran Ltd, is hoped to be a useful reference source for optical, physical and chemical data.

The data in this Handbook is provided in good faith and reviews have been made to verify the sources of information where possible; however Crystran Ltd can accept no responsibility for accuracy of data. It is not always possible to verify data where there are conflicting figures in different publications, revisions are a continuing process and we have applied our best judgement where appropriate. References are stated where possible, and in most cases, transmission scans are original Crystran company data.

Formulae and notes included within the Handbook are not intended to be comprehensive. We have found them a useful reference and have been consulted on numerous occasions.

Values quoted in the Handbook are, as standard, SI units except where alternative units are in common usage – an Appendix is included containing unit conversion tables.

Crystran Ltd would like to acknowledge the help of our associate company Korth Kristalle GmbH in Germany and our associate Mr T Enju of Enju Inc. Japan for providing additional information.

© Crystran Ltd 2018

INTRODUCTION TO CRYSTRAN LTD

MATERIALS DATA

Crystran Ltd is a manufacturer and supplier of high quality optical components. We manufacture windows, lenses, prisms and specialist optics as both standard products and to the designs of our customers. For over 21 years we have specialised in crystal materials and exotic glasses and used them to manufacture highly precise optical components for the Infrared, Ultraviolet and Visible regions of the spectrum.

You can see a full list of the materials we work with on our website.

Crystran Ltd no longer grow crystal in-house, however we still retain the experience and understanding that is invaluable when talking to suppliers and customers alike. Crystran holds extensive stocks of crystal as ingots to offer a comprehensive range of crystals and crystal products for UV, IR and visible applications.

Crystal materials can be supplied in a number of different forms – raw boule, cut and shaped blanks, and polished optics. Our production facilities include cutting and several polishing shops for the production of components to customer specifications.

Our dedication to investment in both staff and equipment enables us to work to increasingly higher standards. Surface qualities of up to $\lambda/20$ at 633nm and parallelism of better than 2 arc seconds can be achieved (dependent on material and method required). Double sided and conventional polishing techniques, coupled with computerised interferometry and other test equipment, ensure that specifications can be met.

MATERIALS DATA

Our main test equipment includes

12" (300mm) Vertical Bespoke Interferometer Capability $\lambda/20$			
4" Intellium Horizontal Interferometer			
Capability $\lambda/20$ Notes Expandable to 6" with a Jenoptik attachment.			
3m Optical Bench with rail, SIOS laser and Heidenhain digital encoder			
Capability ROC of lenses up to +650mm convex -900mm concave Notes CA dependent on ϕ of lenses and best fit sphere			
OptiLux SD Scratch Dig Evaluation System			
Capability S/D 10/5 against MIL 13830 Certified against Davidson Optronics D667 comparator plates SN:2444			
certified against Daviason Optionies Door comparator plates Sivi2444			
Trioptics PrismMaster and Opti-Angle measuring systems			
Capability <2" for parallelism and angles			
Baty Venture Vision measuring system			
Capability 0.5µm resolution			
Notes 3-axis automated non-contact			
Taylor Hobson CCI 6000 Talysurf			
Capability 0.1Å			
DE Frankier ET ID Creation atom			
PE Frontier FT-IR Spectrometer Capability 2μm to 25μm			
PE Lambda 750 Spectrometer UV/VIS/IR			
Capability 195nm to 3000nm			
Vacuum UV transmission test for specific testing at Lyman- α wavelength			
Capability 121.6nm			
Trioptics Spherocompact Capability 2µm resolution			
Notes Contact measurement of lens ROC			
Davidson optical thickness gauge			
Non contact method			
Resolution 1um			

MATERIALS DATA

Polishing Specifications

Specifying a polishing standard must be approached with caution. Costs can escalate rapidly for more exacting specifications, particularly if combinations of requirements are needed. For instance, ultra-flatness can be achieved at the expense of a good cosmetic finish and vice versa. Good flatness and parallelism in thin windows is possible with a double-sided polishing technique.

Typical Polishing Specifications used at Crystran

It is not possible to give examples of a typical specification as that will depend on several factors such as material, size and method of manufacture. We do have certain specifications that we always apply to windows as standard (some traded materials may have different specifications).

+0/-0.1mm
+0/-0.1mm
+/-0.1mm
60/40 or better
40/20
Up to 0.5mm
80% of diameter

Our technical sales team will be happy to discuss and advise on these matters.

Lens Tooling

Crystran have an extensive list of tooling and NPL qualified test plates for the manufacture of lenses with close tolerances. Please contact us for more information.

Hot Forging

This is a quick and cost effective method for manufacture of silver chloride and silver bromide optics. The quality achieved by this technique, although inferior to conventional polishing, is more than adequate for a wide range of infra-red applications.

The technique is particularly appropriate for spectroscopic mini-cell windows where the surface has a small depression for liquid films.

In the course of our hot-forging operations we have acquired a stock of tooling which it is economical to design around. Please contact us about sizes available.

MATERIALS DATA

Bubbles & Flaws (ISO/BS/MIL Specification 1/)

These are normally associated with glasses and rarely with crystal, however present in soft crystals such as CsI, KRS5 etc. *Example: 1/5 x 0.06 is 5 flaws less than 0.06mm.*

Stria (ISO/BS/MIL Specification 2/)

Stria are vitreous inclusions mainly in glass and rarely with crystal. There are 5 grades of increasing severity. *Example: 2/01 is the lowest number of stria.*

Flatness (ISO/BS/MIL Specification 3/)

Flatness is specified in terms of the wavelength of light which represents the degree of power, with the addition of form error which defines the allowed irregularity of the fringe pattern.

Example: 3/2(0.5) is 2 fringes power/0.5 fringes irregularity

Parallelism

The parallelism of a window can be specified in terms of angle, usually as minutes of arc. Sometimes it is in terms of thickness variation or 'run-out'. Conventional polishing will typically produce <3-10 arc minutes. Double-sided polishing can produce <5 arc seconds. To prevent multiple reflections between faces (an etalon effect) it may be prudent to have a small wedge angle specified.

Lens Centration (ISO/BS/MIL Specification 4/)

Lenses involve variations on other specifications. 'Flatness' is the radius of curvature as measured against a reference standard test plate, whilst 'parallel' is more accurately specified as centration error.

Example: 4/3 is 3 minutes centration.

Cosmetic Finish (ISO/BS/MIL Specification 5/)

Visual appearance is often a subjective matter and is still commonly specified by scratch/dig. This classifies the surface in terms of the maximum length of small scratches after polishing.

Under this classification, S/D 80/50 would be regarded as quite poor and appropriate for simple spectroscopic windows and S/D 20/10 is an exacting standard suitable for low scattering laser applications. S/D 60/40 is a reasonably routine finish.

SCRATCH				
MIL-PRF-13830B *	MIL-F-48616 MIL-C-48497A	Width (μm)		
5	А	5		
10	В	10		
20	С	20		
40	D	40		
60	E	60		
80	F	80		
120	G	120		

	DIG	
MIL-PRF-13830B	MIL-F-48616 MIL-C-48497A	Width (mm)
5	А	0.05
10	В	0.1
20	С	0.3
30	D	0.4
40	Е	0.5
50	F	0.6
70	G	0.7
100	Н	1

* This parameter is a measure of the brightness of scatter rather than the physical width of the scratch.

MATERIALS DATA

Working Equivalents Applied at Crystran

These are not absolute measures but used as a guide based upon our experience.

S/D	< 30mm Ø optics	30 to 40mm Ø optics
80/50	5/3 x 0.25 ; K5 x 0.016	5/4 x 0.4 ; K5 x 0.016
80/40	5/2 x 0.25 ; K5 x 0.016	5/3 x 0.4 ; K5 x 0.016
60/40	5/2 x 0.25 ; K3 x 0.016	5/3 x 0.4 ; K3 x 0.016
60/30	5/3 x 0.16 ; K3 x 0.016	5/3 x 0.25 ; K3 x 0.016
40/20	5/2 x 0.16 ; K4 x 0.01	5/3 x 0.25 ; K4 x 0.01
40/10	5/3 x 0.063 ; K4 x 0.01	5/3 x 0.1 ; K4 x 0.01
20/10	5/3 x 0.063 ; K2 x 0.01	5/3 x 0.1 ; K2 x 0.01
15/5	5/4 x 0.025 ; K2 x 0.0063	5/4 x 0.04 ; K2 x 0.0063
10/5	5/4 x 0.025 ; K2 x 0.004	5/4 x 0.04 ; K2 x 0.004
S/D	40 to 50mm Ø optics	> 50mm Ø optics
80/50	5/8 x 0.4 ; K5 x 0.016	5/20 x 4 x 0.4 ; K5 x 0.016
80/40	5/6 x 0.4 ; K5 x 0.016	5/20 x 3 x 0.4 ; K5 x 0.016
60/40	5/2 x 0.4 ; K3 x 0.016	5/20 x 3 x 0.4 ; K3 x 0.016
60/30	5/8 x 0.25 ; K3 x 0.016	5/20 x 4 x 0.25 ; K3 x 0.016
40/20	5/6 x 0.25 ; K4 x 0.01	5/20 x 3 x 0.25 ; K4 x 0.01
40/10	5/6 x 0.1 ; K4 x 0.01	5/20 x 3 x 0.1 ; K4 x 0.01
20/10	5/6 x 0.1 ; K2 x 0.01	5/20 x 3 x 0.1 ; K2 x 0.01

 15/5
 5/8 x 0.04 ; K2 x 0.0063
 5/20 x 4 x 0.04 ; K2 x 0.063

 10/5
 5/8 x 0.04 ; K2 x 0.004
 5/20 x 4 x 0.04 ; K2 x 0.004

Surface finish can also be specified in terms of surface roughness (Roughness Average, Ra) and can be measured by interferometric profiling

Stresses (ISO/BS/MIL Specifications 6/)

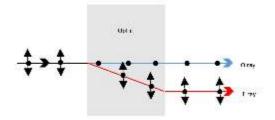
Stresses, known as strain birefringence, are variations in refractive index generally caused during the annealing of the glass or crystal. It is defined as the optical path difference caused by the stressed region in terms of nm path difference per cm reference path. Generally, CaF_2 and similar crystal is controlled better than 5nm/cm.

Example: 6/10 defines strain birefringence of 10nm/cm.

MATERIALS DATA

Chamfers

Chamfers are usually required both to protect the work from chipping during polishing and also in use. Protective chamfers are referred to as 'break edge' and may be removed by the polishing process. For operational reasons Crystran may choose not to apply chamfers to some, especially small windows. Some polishing operations may require slightly larger chamfers.


Chamfers are usually 45° (nominally) and measured down the edge of the optic unless otherwise specified. The size of chamfers is considered uncritical unless specifically requested.

Optic Axis (Birefringence)

Birefringence is a phenomenon that occurs in non-cubic crystals. Most materials are isotropic and the speed of light is the same in all directions as it passes through. Birefringent materials are anisotropic and the speed of light depends on the plane of polarisation and direction of propagation of the light.

When light is incident on a birefringent material, it is split into 2 rays – the ordinary (o ray) and the extraordinary (e ray). As illustrated below, the rays become polarised in perpendicular directions. These rays travel at different speeds and may travel in different directions.

There is one direction in a birefringent material where the 2 rays travel with the same speed – this is known as the optic axis. The light will behave as it would in an isotropic material. When light is incident at any angle to the optic axis, the e and o rays are split and are separated in space. The e ray will rotate around the o ray if the material is rotated.

For windows in Sapphire, Quartz, Calcite or MgF_2 the optic axis is usually specified as perpendicular to the surface, known as z-cut or Zero degree.

MATERIALS DATA

Reflection Loss, Brewster Angle & Critical Angle

When light is incident on a boundary between two media, some of the light is lost in reflection; this loss is calculated as a percentage of the intensity of the original beam and is dependent on the reflective indices of the material, the angle of incidence and state of polarisation of the light. The reflection loss of unpolarised light normally incident on a surface from one surface is:

Reflection Loss =
$$\frac{(n-1)^2}{(n+1)^2}$$

For transparent materials, the second surface must be accounted for. Thus, the internal transmittance of a parallel plate is:

Transmittance =
$$\frac{2n}{(n^2 + 1)}$$

Unpolarised light reflected from a plane surface boundary of two transparent media is partially polarised. At the polarising angle (Brewster's angle θ_b) the reflected light is completely polarised and perpendicular to the refracted ray.

Brewsters Angle:
$$\tan \theta_b = \frac{n_1}{n_2}$$

Total internal reflection occurs when the angle of incidence of a beam of light incident upon an interface is increased until the angle of refraction is 90°. This critical angle θ_c can be found in terms of the index of refraction for the two media by solving Snell's Law when $\theta_r = 90^\circ$.

Snell's Law:
$$n = n_1 \sin \theta_i = n_2 \sin \theta_r$$

$$\sin \theta_c = \frac{n_1}{n_2} \sin 90^\circ$$

This phenomenon only occurs when the light is emerging from a denser medium, i.e. when n_1 is greater than n_2 .

Reststrahlen

For many inorganic materials used in optical applications, the refractive index remains constant and the absorption coefficient is zero or very small over the majority of its transmission range. When Reststrahlen materials are illuminated at wavelengths that excite the atomic, or crystal lattice structure, a number of resonance effects are noticed. As the Reststrahlen maximum frequency is approached, the refractive index (n) undergoes a rapid change, the extinction coefficient (k) rises rapidly and the Fresnel reflection coefficient (R) may become high. Therefore, at the Reststrahlen maximum frequency for a particular material, the reflectance of that material rises sharply:

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$

The Reststrahlen effect occurs notably in the 6μ m to 300μ m range. There are not many satisfactory filters in this region; hence the effect is often used for the extraction of a narrow spectral region from a spectral continuum.

In practical applications, some properties of Reststrahlen materials are significant; particularly the fact that the maximum reflectance increases as the temperature is reduced. When used as thin films (for coatings on mirrors and lenses) they exhibit interference maxima and minima on the short wavelength side of the reflectance peaks.

MATERIALS DATA

Metrological Wavelengths

λ (nm)	Code	Spectral Line	λ (nm)	Code	Spectral Line
10640.0		CO2 laser	546.0740	е	Green mercury
2325.42		IR mercury	486.1327	F	Blue hydrogen
1970.09		IR mercury	479.9914	F'	Blue cadmium
1529.582		IR mercury	435.8343	g	Blue mercury
1064.0		Nd:YAG laser	404.6561	h	Violet mercury
1013.98	t	IR mercury	365.0146	i	UV mercury
852.11	S	IR caesium	334.1478		UV mercury
706.5188	3r	Red helium	312.5663		UV mercury
656.2725	5 C	Red hydrogen	296.7278		UV mercury
643.8469) C'	Red cadmium	280.4		UV mercury
632.8		He:Ne laser	248.3		UV mercury
589.2938	3 D	Yellow sodium	121.567		Lyman α
587.5618	3 d	Yellow helium			

Kodak[™] IRTRAN[™] Numbers

$IRTRAN-1 = MgF_2$	IRTRAN-4 = ZnSe
IRTRAN-2 = ZnS	IRTRAN-5 = MgO
$IRTRAN-3 = CaF_2$	IRTRAN-6 = CdTe

UV Bands

UV-A = 400 - 320nm UV-B = 320 - 290nm UV-C = 290 - 100nm

Neutral Density Filters

Transmission % = $100 / 10^{ND}$ Where ND is the optical density

MATERIALS DATA

Hardness Scales

The Knoop scale (HK) is the most commonly used, the others being; Moh, Vickers, Rockwell and Brinell.

The experimental procedure for the derivation of a value on the Knoop scale is to use a pyramidal diamond point which is pressed into the material in question with a known force. The indentation made by the point is then measured and the Knoop number calculated from this measurement. The test has been designed for use on a surface that has not been work-hardened in the lattice direction in which the hardness value is being measured. The hardness is usually stated as a Knoop figure but the units are actually kgf mm⁻²

The values on the Moh scale are arrived at by measuring the relative hardness of materials by observing which materials are able to scratch other materials. The Moh scale, which is not linear, is limited by the softest material Talc (Moh=1) and the hardest material Diamond (Moh=10).

1	Talc	6	Feldspar
2	Gypsum	7	Quartz
3	Calcite	8.	Topaz
4	Fluorite	9.	Sapphire
5	Apatite	10.	Diamond

Elastic Coefficients

Elastic coefficients, otherwise known as Elastic Stiffness Constants are the constants of proportionality between the components of stress and strain. They are therefore related to the elastic moduli.

For cubic crystals the coefficients are three:	C ₁₁ , C ₁₂ , C ₄₄
For tetragonal crystals, five:	C ₁₁ , C ₁₂ , C ₁₃ , C ₃₃ , C ₄₄
For hexagonal crystals, six:	$C_{11}, C_{12}, C_{13}, C_{14}, C_{33}, C_{44}$

The three moduli relate to these coefficients as follows:

Youngs modulus = $E = (C_{11} + 2C_{12}) (C_{11} - C_{12}) / (C_{11} + C_{12})$ Bulk modulus = $K = (C_{11} + 2C_{12}) / 3$ Shear modulus = $G = C_{44}$

MATERIALS DATA

Some Useful Definitions

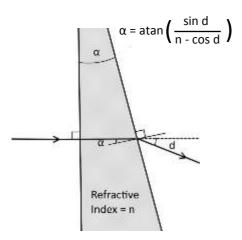
Transmittance = $\frac{I_E}{I_o}$ Intensity of exit beam Transmittance is usually expressed as a percentage.

Transmissivity = Internal Transmittance per unit thickness

Absorptance = $\frac{I_o - I_E}{I_o}$ $\frac{Intensity of absorbed beam}{Intensity of Incident beam}$ *The complement of transmittance*

Absorbance = $\log_{10} \left(\frac{I_o}{I_e} \right)$

Example: 20% transmittance is $\log_{10}\left(\frac{100}{20}\right) = 0.7$ absorbance.


Wave Number = $\frac{1}{\text{wavelength}}$ (cm) = $\frac{10000}{\text{wavelength}}$ (µm)

Focal length (mm) = $\frac{1000}{\text{dioptre}}$

Example: 20 dioptre = 50mm F.L.

Beam Deviation through Wedge

Angle (α) to provide a given deviation.

 $\label{eq:Transmission} \begin{array}{l} \mbox{Transmission Absorption Coefficient} \\ T_i = exp \; (-\mu \; . \; L) \\ \mu = - \; (ln \; T) \; / \; L \end{array}$

$$\label{eq:multiple} \begin{split} \mu &= Absorption \ Coefficient \ (cm^{-1}) \\ L &= Path \ Length \ (cm) \\ T_i &= Internal \ Transmission \ (\%/100) \\ T_e &= T_i + Reflection \ losses \\ n &= Refractive \ Index \end{split}$$

Example: n = 1.5492; Path length 10cm External Transmission = 76.8% = 0.768 Reflection loss is 0.0887 (page 14) Ti = 0.768 + 0.0887 = 0.8567 μ = - (ln 0.8567) / 10 = 0.0155 cm⁻¹

MATERIALS DATA

S.I. Prefixes

Y	Yotta	10 ²⁴	d	deci	10 ⁻¹
Z	Zetta	10 ²¹	с	centi	10-2
Е	Exa	10 ¹⁸	m	milli	10 ⁻³
Р	Peta	10 ¹⁵	μ	micro	10 ⁻⁶
Т	Tera	10 ¹²	n	nano	10 ⁻⁹
G	Giga	10 ⁹	р	pico	10 ⁻¹²
М	Mega	10 ⁶	f	femto	10 ⁻¹⁵
К	Kilo	10 ³	а	atto	10 ⁻¹⁸
h	hecto	10 ²	z	zepto	10 ⁻²¹
da	deka	10	У	yocto	10 ⁻²⁴

Units Conversions

1 Å	= 10 ⁻⁴ μm	= 10 ⁻⁷ mm	= 10 ⁻⁸ cm	= 10 ⁻¹⁰ m
λ (μm)	1.234 /ev			
1 µm	10³ nm	10⁻³ mm	10 ⁻⁴ cm	10⁻⁵ m
1 mm	0.04" (40 thou)			
1 microinch	254 Å	25.4 nm	0.0254 μm	10 ⁻⁶ inch
1 thou	0.001″	25.4 μm		
1 inch	25.5mm	2.54 cm		
1 radian	57.30°			
1 mile	1.609344 km			
1°	17.45 x 10 ⁻³ rad			
π rad	180°			
Degrees °C =	5 . (°F - 32) / 9	Degrees °F =	32 + (9 x °C) / 5	
1 lb	0.4535 kg	1 kg	2.205 lb	
1 imp gallon	4.5454 litre	1 litre	0.22 imp gallon	1.76 imp pint
Frequency MHz	300 / λ metres			
Frequency GHz	300 / λ mm			
Frequency THz	300 / λ μm			

Pressure

	GPa	N mm ⁻²	Kgf cm⁻²	Kgf mm⁻²	Mbar	lbf in ⁻²	Dyne cm ⁻² Torr	
Gpa	1	1x10 ³	1.02x10 ⁴	1.02x10 ²	0.01	1.45x10 ⁵	1x10 ¹⁰	7.5x10 ⁶
N mm ⁻²	1x10 ⁻³	1	10.2	0.102	1x10 ⁻⁵	145.0	1×10 ⁷	7.5x10 ³
Kgf cm⁻²	9.81×10 ⁻⁵	9.81x10 ⁻²	1	0.01	9.81x10 ⁻⁷	14.223	9.81x10 ⁵	735.6
Kgf mm ⁻²	9.81x10 ⁻³	9.81	100	1	9.81x10 ⁻⁵	1.42x10 ³	9.81x10 ⁷	7.36x10 ⁴
Mbar	100	1x10 ⁵	1.02x10 ⁶	1.02x10 ⁴	1	1.45x10 ⁷	1×10 ¹²	7.5x10 ⁸
lbf in ⁻²	6.89x10 ⁻⁶	6.89x10 ⁻³	7.03x10 ⁻²	7.03x10 ⁻⁴	6.89x10 ⁻⁸	1	6.89x10 ⁴	51.71
Dyne cm ⁻²	1x10 ⁻¹⁰	1x10 ⁻⁷	1.02x10 ⁻⁶	1.02×10 ⁻⁸	1x10 ⁻¹²	1.45x10 ⁻⁵	Ţ	7.5x10 ⁻⁴
Torr	1.33x10 ⁻⁷	1.33x10 ⁻⁴	1.36x10 ⁻³	1.36x10 ⁻⁵	1.33x10 ⁻⁹	0.019	1333.2	1

Normal Atmospheric Pressure (1 atm)

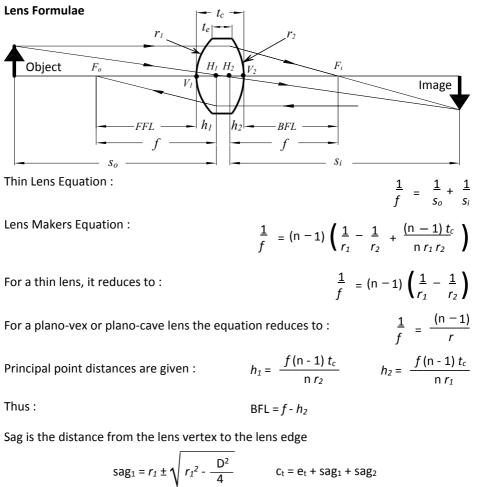
(1)	pounds/sq inch	14.7 psi
(2)	inches of mercury	29.9213"
(3)	mm of mercury (torr)	760 mm (760 torr)
(4)	millibar	1013.240 mBar
(5)	Pascals	101.324 kPa

(2) and (3) are measures of a column of mercury supported by 1 atmosphere.

(4) and (5) are actual measures of force/area and take account of the density of mercury (13.595gm/cc at 0°C) and the acc of gravity (980.665 cm/sec²) when converting from a mercury barometer reference.

Medium vacuum 20 to 10 ⁻² torr	High vacuum 10 ⁻² to 10 ⁻⁶ torr
Very high vacuum 10 ⁻⁶ to 10 ⁻⁹ torr	Ultra high vacuum >10 ⁻⁹ torr
LEO (eg ISS orbit = 10 ⁻¹⁰ torr	Interplanetary Space = 10 ⁻¹⁶ torr

Specific Heat


	J g ⁻¹ K ⁻¹	J Kg ⁻¹ K ⁻¹	cal g ⁻¹ K ⁻¹
1 J g ⁻¹ K ⁻¹ =	1	1000	0.2388
1 J Kg ⁻¹ K ⁻¹ =	0.001	1	238.8 x 10 ⁻⁶
1 cal g ⁻¹ K ⁻¹ =	4.1868	4186.8	1

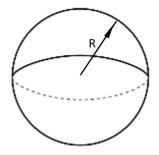
Thermal Conductivity

ī

	W. cm ⁻¹ . K ⁻¹	W. m ⁻¹ . K ⁻¹	cal. cm ⁻¹ . s. K ⁻¹	Btu ft ⁻¹ . hr. F ⁻¹
1 W. cm ⁻¹ . K ⁻¹ =	1	100	0.2388	694
1 W. m ⁻¹ . K ⁻¹ =	0.01	1	2.388 x 10 ⁻³	6.94
1 cal. cm ⁻¹ . s. K ⁻¹ =	4.1868	418.68	1	2903
1 Btu ft ⁻¹ . hr. F ⁻¹ =	1.44 x 10-3	0.144	34.5 x 10⁻⁴	1

MATERIALS DATA

Magnification of a lens = $\frac{s_i}{s_o} = \frac{f}{(f - s_o)}$ Conventionally taken as $\equiv 0.25 \text{ P}$


Sign convention of +ve and -ve radii and linear measurements must be applied consistently.

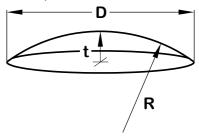
s _o = Object distance	s_i = Image distance
F ₁ = Front focal point	F ₂ = Back focal point
V ₁ = Front vertex	V ₂ = Back vertex
H ₁ = First principal point	H ₂ = Second principal point
r_1 = Front radius of curvature	r_2 = Back radius of curvature
f = Effective focal length	D = Diameter of lens
FFL = Front focal length	BFL = Back focal length
n = Lens Refractive Index in air	P = Power in dioptre

MATERIALS DATA

Spheres

Area of surface = $4\pi R^2$ Volume = $\frac{4\pi R^3}{3}$

Segment of a Sphere (Lens)


The segment is a volume cut off from a sphere by a chord plane.

Spherical Area = $2\pi R T$

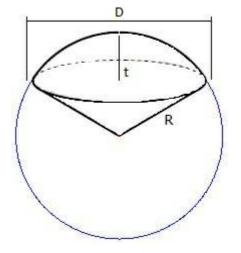
Total Area

Volume

a = $\frac{\pi (D^2 + 8R t)}{4}$ = $\frac{\pi t (3D^2 + 4t^2)}{24}$

Sector of a Sphere

The circular sector is a three dimensional portion of a sphere enclosed by the curved surface and the cone to the centre.


Total area

$$= \pi R (2t + \frac{D}{2})$$

Total volume

$$\frac{2}{3}\pi R^2 t$$

=

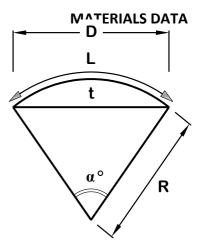
Segment of a Circle

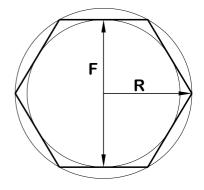
The segment is a portion of a circle informally defined as a area cut off from the rest of the circle by a chord.

Area =
$$\frac{(\text{RL} - \text{RD} - \text{Dt})}{2} = \frac{(\pi \text{ R}^2 \alpha^\circ)}{360^\circ} - \frac{(\text{RD} - \text{Dt})}{2}$$

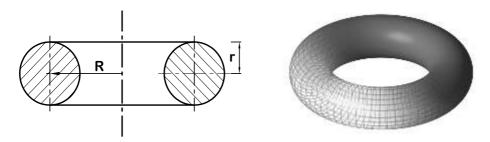
Sector of a Circle

The circular sector is a wedge of a circle enclosed by the curved edge and the angle to the centre.


Area =
$$\frac{(\pi R^2 \alpha^\circ)}{360^\circ} = \frac{(R L)}{2}$$

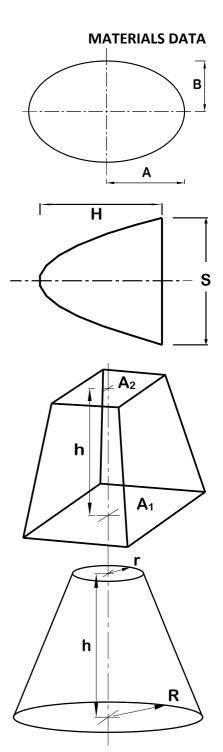

Hexagon

Area = $3 R^2 \cos 30^\circ$ = 2.6 R^2 = $F^2 \cos 30^\circ$ = 0.866 F^2


Area External Circle $= \pi R^2 = 1.05 F^2$

Area Internal Circle = $\pi \frac{F^2}{4}$ = 2.35 R²

Torus


Area of Surface = $4\pi^2$. R. r Volume = $2\pi^2$. R. r^2

Ellipse

Area = $\pi A B$

Parabola

Area =
$$\frac{SH}{3}$$

Frustum of a Pyramid

Volume = $\frac{A_1 + A_2 + h\sqrt{(A_1 A_2)}}{3}$ $A_1 = \text{area of base} \qquad A_2 = \text{area of top}$ H = heightFor a pyramid $A_2 = 0$ For a prism $A_1 = A_2$

Frustum of a Cone

Volume = $\frac{\pi h (R^2 + r^2 + R r)}{3}$ R = radius of base r = radius of top H = height For a cone r = 0 For a cylinder R = r

GUIDES - Design of Pressure Windows

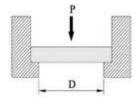
MATERIALS DATA

Calculation of thickness of optical windows used in vacuum or pressure application

DEFINITIONS			
S _{max}	= Maximum Stress	R	= L/W
SF	= Safety Factor	Т	= Thickness
Fa	= Apparent Elastic Limit	Р	= Load per Unit Area
К	= Empirical Constant	L, W	= Length and Width
D	= Unsupported Diameter for an unsupported window		

The maximum stress S_{max} on a uniformly loaded window is given by:

$$S_{max} = (K \cdot D^2 \cdot P) / (4 \cdot T^2)$$
 and also $S_{max} = F_a / SF$ (See Safety Factor Box)


And then solving for thickness, T


T = D .
$$\sqrt{(SF . K / 4)}$$
 . $\sqrt{(P / F_a)}$

T = L.
$$\sqrt{(SF K / 2)}$$
. $\sqrt{(P / (F_a (1 + R^2)))}$

(CIRCULAR WINDOWS)

(RECTANGULAR WINDOWS)

Unclamped, S_{max} at centre

CLAMPED

Circular Window (Safety Factor of 4 & K_c = 0.75) T = 0.866 D $\sqrt{(P / F_a)}$

Rectangular Window (Safety Factor of 4 & K_c = 0.75) T = 1.23 L $\sqrt{(P / (F_a (1 + R^2)))}$

UNCLAMPED

Circular Window (Safety Factor of 4 & $K_u = 1.125$) T = 1.06 D $\sqrt{(P / F_a)}$

Rectangular Window (Safety Factor of 4 & $K_u = 1.125$) T = 1.50 L $\sqrt{(P / (F_a (1 + R^2)))}$

CONSTANT K

The value of **K** depends on the method of support, upon the force introduced in clamping and upon the brittle / ductile character of the window material involved.

Empirically, a **K** value of 0.75 is found suitable for most optical crystals when the perimeter is clamped, and a value 50% greater when unclamped.

 $K_c = 0.75$ $K_u = 1.125$

SAFETY FACTOR

To avoid plastic deformation, the maximum stress (S_{max}) should be less than the Apparent Elastic Limit (F_a) by an appropriate Safety Factor (SF)

 $S_{max} = F_a / SF$

A modest safety factor of 4 (i.e., maximum stress equals one quarter of the elastic limit) seems to suffice for many laboratory applications where the operating conditions are reasonably under control. Severe conditions such as thermal shock require special consideration and may even result in a decision to use a *reduced* thickness. The published Apparent Elastic Limit of some materials may not be completely reliable. Crystals vary and cleavage may occur according to grain boundaries or the particular cut of the ingot. Ultimately, the final design thickness must be a carefully considered decision and may need to be empirically tested. Crystran Ltd can accept no responsibility for the adoption of these calculations and recommendations.

NOTES:

- A carefully designed window may still break before any significant loading if the mounting introduces any localised stress.
- Mismatch of expansion coefficients generally dictates the use of resilient material between window and mounting.
- Thermal outgassing used in UHV systems should be undertaken with caution with crystal windows as thermal shock may initial cleavage in some crystals
- The constant for clamped mounting allows for no flexure at the wall. The use of soft gaskets may allow flexure so the formula for the "unclamped" condition should be used.

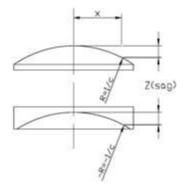
GUIDES - Aspheric Lens Design

MATERIALS DATA

The standard aspheric formula is:

$$Z = \frac{cr^2}{1 + \sqrt{1 - (1 + K)c^2r^2}} + A_4r^4 + A_6r^6 + A_8r^8 + A_{10}r^{10}.$$

Where:


Z = Depth or "Sag" of the curve

r = Distance from the centre

C = Curvature (= 1 / Radius)

K = Conic Constant

A_x = Higher order terms

Be aware that for some reason many designers show c as the Radius (R) and forget to show the reciprocal. This of course renders the equation obviously unworkable in most cases but it can catch you out. The Radius (R) does not represent the closest spherical surface, but the spherical surface from which the aspheric terms cause the curve to diverge from it, either shallower or deeper than the spherical curve. The closest or "best fit" spherical surface is the Radius which matches the aspheric sag at the largest useful diameter.

Taking care to obey the sign conventions, the sag figure must be added to the lens centre thickness to derive the actual lens thickness at any point. Do not simply present sag data to the machinist, they are likely to generate to that figure and produce a lens with zero edge thickness.

Most optical designers use only the even-order terms from A_2 to A_{20} , but should they be required the odd-order terms are available, for the profile only, from A_1 to A_{19}

The conic constant K has traditionally been used to design the first aspheres; simple parabolas and hyperbolas. It is now largely redundant in the above equation as the A_x terms can define any surface. A spherical surface is defined by the above equation when K=0 and all A_x terms are zero.

GUIDES - Cleaning Optics

MATERIALS DATA

Crystal optics are delicate and should be treated carefully if they are to be cleaned. Described is a method, but the technique comes with practice. Handle optics by the edge using lint-free nylon gloves or plastic protective gloves when cleaning with solvent, checking that the solvent does not attack the glove. Handle optics as little as possible. Cleaning may create fine scratches which you cannot see easily but which may contribute to scattering, particularly in the UV. If the optic is mounted, try never to let solvent creep into the mounting ring. Use an air jet only for removal of dust.

Very Delicate Materials: CsI, KRS5, Germanium, Zinc Selenide, Zinc Sulphide.

Soft materials are inclined to take marks (sleeks) or show up marks easily. Wash in a solvent such as methanol or propanol for light marking. Use an environment friendly solvent such as NuSol Rapide (a replacement for trichloroethylene which is available in the UK) or otherwise acetone, for greasy or waxy contaminants. Soak the optic and wipe whilst wet with cotton wool (absorbent cotton in the USA) dipped in the solvent and let the optic dry by evaporation or assist it with airflow as it is wiped.

Delicate Materials: Fluorides, Silicon.

These should be treated as above where practical, but it is often preferable to clean them carefully with a damp tissue. We use Kimtech Science 100 professional wipes. Do not rub the optic, but wipe gently and allow the thinnest film of solvent to dry by evaporation.

Harder Materials: Glasses, Sapphire.

We treat these materials in the same manner as delicate materials.

Coated Materials: Coatings should be treated as delicate even though they can be more rugged than the crystal base material. DLC on germanium is an example of a very tough coating.

Aqueous Cleaning: Calcium Fluoride, Magnesium Fluoride, Lithium Fluoride

We have become aware that very small absorptions (< 1%) can occur due to closely bonded organic surface contamination. Notably, this is found at 3.4µm and probably due to waxes used in the polishing process. Aqueous cleaning using demineralized water with a surfactant detergent such as Alconox can be effective. Use a bath of the fresh warm solution in place of, or additionally to, the solvent methods. Soak the optic for 10 minutes and wipe while wet with cotton wool dipped in the solvent. Rinse in clean warm demineralized water dry by evaporation or assist it with airflow.

GUIDES - Materials

MATERIALS DATA

Crystran publish a number of guides with practical details relating to the grades and uses of the materials that we supply. Because these guides are reviewed on a regular basis as old grades and trade designations disappear or new ones become available, we reference the guides here with a link to our website repository where the latest versions will be available.

Please go to our website at www.crystran.co.uk/documents

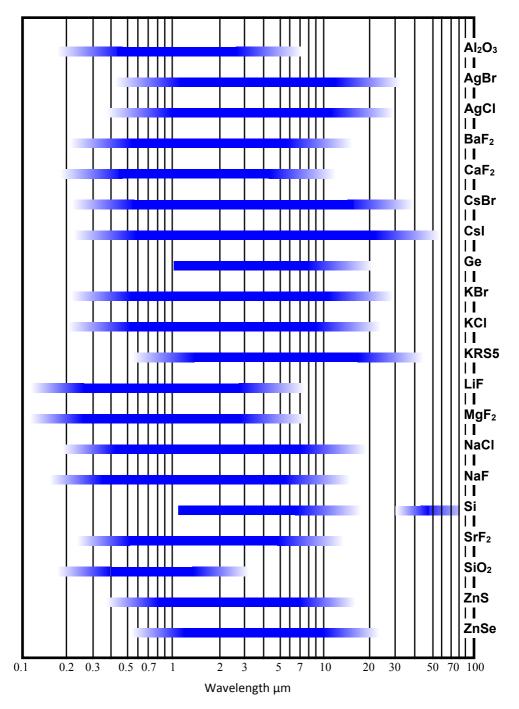
Guide to Calcium Fluoride Grades

Guide to Sapphire

Guide to Raman Material

Guide to Silica Glass

Guide to Lanthanum Fluoride


Guide to Quartz Crystal

Guide to Crystal Quality

All MSDS

COMPARISON OF DATA - Refractive Index

Sodium Fluoride 1.24Magnesium Fluoride Lithium Fluoride 1.39Calcium Fluoride 1.4 Strontium Fluoride 1.44 **Barium Fluoride** 1.45 Potassium Chloride 1.45 Silica Glass (SiO2) 1.46 **Rubidium Chloride** 1.48 Sodium Chloride 1.49 Crown Glass 1.52 **Rubidium Bromide** 1.52 Potassium Bromide 1.53 Quartz Crystal (SiO2) 1.55 Lanthanum Fluoride 1.6**Rubidium Iodide** 1.61 Potassium Iodide 1.62 **Caesium Bromide** 1.66 Calcite 1.66 Magnesium Oxide 1.67 Lead Fluoride 1.71Caesium Iodide 1.74Sapphire (Al2O3) 1.76Yttrium Aluminium Garnet (YAG) 1.81Silver Chloride 1.98 Thallium Bromo-Chloride (KRS6) 2.18Thallium Chloride 2.19Zinc Sulphide Silver Bromide **Thallium Bromide** Gallium Lanthanum Sulphide Thallium Bromo-Iodide (KRS5) Zinc Selenide Rutile (TiO2) 2.56Gallium Arsenide 3.27 Silicon 2 <u>7</u>2 Germanium 4

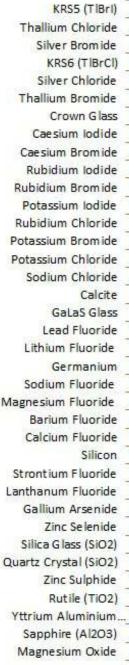
MATERIALS DATA

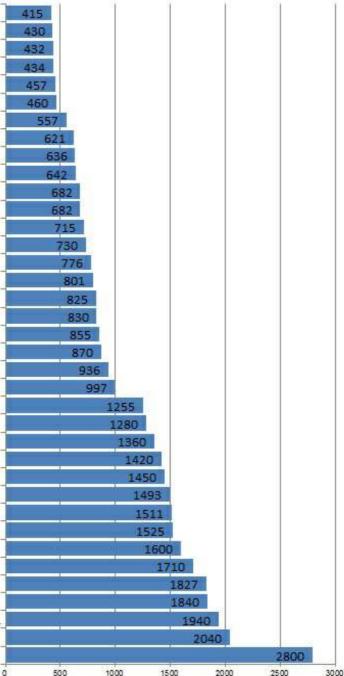
1.5

2

2.5

3


3.5


4

1

COMPARISON OF DATA - Melting Point °C

MATERIALS DATA

COMPARISON OF DATA - Density g/cc

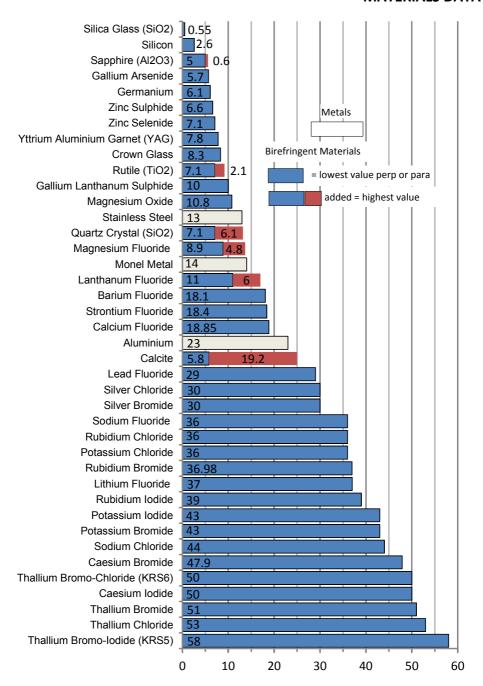
Potassium Chloride Silicon Crown Glass Rutile (TiO2) Calcite 3 98 4.04Zinc Sulphide Caesium lodide A 56 Barium Fluoride 4.89 Zinc Selenide Germanium Silver Chloride 5 94 Silver Bromide 6.47 7.02 7 18 Lead Eluoride

MATERIALS DATA

6.5 7

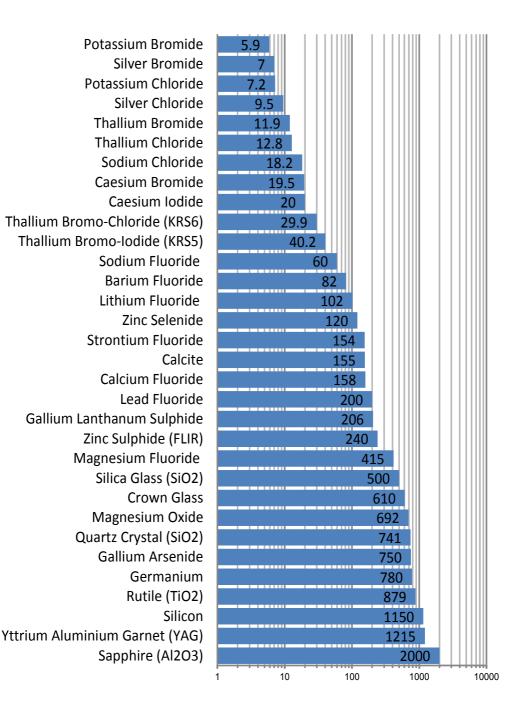
75 8

6

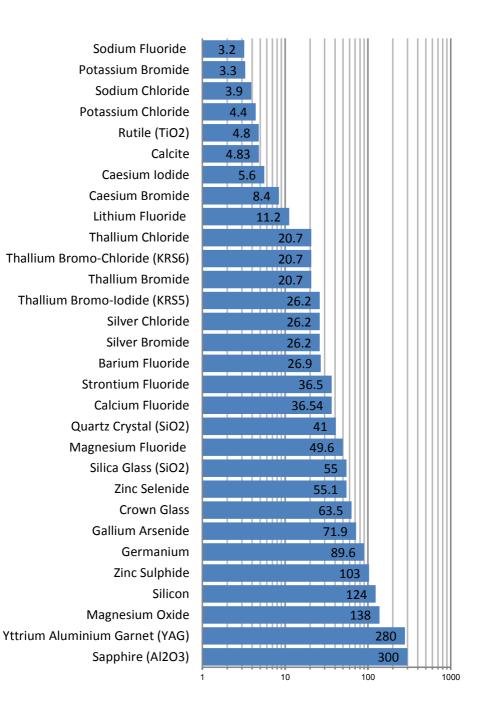

Sodium Chloride Silica Glass (SiO2) Lithium Fluoride Quartz Crystal (SiO2) Sodium Fluoride Potassium Bromide Rubidium Chloride Potassium lodide Magnesium Fluoride Calcium Fluoride Rubidium Bromide Rubidium Iodide Magnesium Oxide Sapphire (Al2O3) Gallium Lanthanum Sulphide Strontium Fluoride Caesium Bromide Yttrium Aluminium Garnet (YAG) Gallium Arsenide Lanthanum Fluoride Thallium Chloride Thallium Bromo-Chloride (KRS6) Thallium Bromo-Iodide (KRS5) Thallium Bromide

1 15

2


÷ 2.5 4.3 •

COMPARISON OF DATA - Expansion Coefficient x 10⁻⁶ MATERIALS DATA



COMPARISON OF DATA - Knoop Hardness Kgf/mm

MATERIALS DATA

COMPARISON OF DATA - Rupture Modulus MPa

Barium Fluoride (BaF₂)

MATERIALS DATA

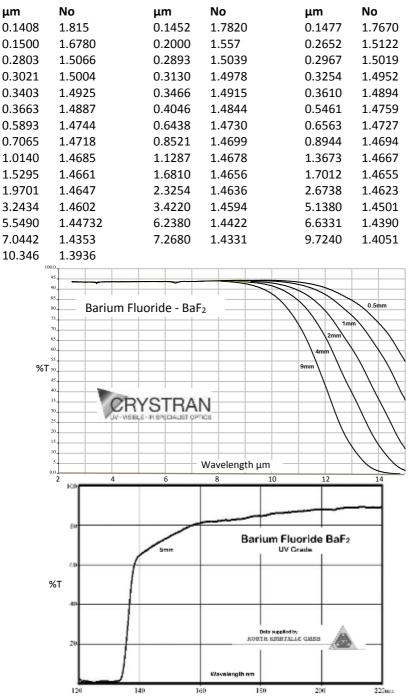
Barium Fluoride is grown by vacuum Stockbarger technique. Unlike CaF2, BaF2 is not found in the native state and all material must be synthesised chemically making BaF2 relatively expensive to produce. Barium Fluoride cleaves easily and is highly susceptible to thermal shock. It polishes well and can be etched (5). The highest purity VUV material can be qualified as fast scintillator grade.

APPLICATIONS: Barium Fluoride is used in spectroscopic components. It is often suitable for applications in the passive IR band (8 to 14µm) and is often used as a view-port window for thermography. For an equivalent thickness the transmission extends approximately 1µm further into the IR than CaF2. The highest quality BaF₂ also has application as the fastest known scintillator material and is used in High Energy Physics Experiments.

Transmission Bango	0 15 to 12um
Transmission Range	0.15 to 12µm
Refractive Index	1.45 at 5μm (1)
Reflection Loss	6.5% at 5µm (2 surfaces)
Absorption Coefficient	3.2 x 10⁻⁴ cm⁻¹ @ 6μm
Reststrahlen Peak	47 μm
dn/dT	-15.2 x 10 ⁻⁶ /°C (2)
$dn/d\mu = 0$	1.95µm
Density	4.89 g/cc
Melting Point	1386°C
Thermal Conductivity	11.72 W m ⁻¹ K ⁻¹ @ 286 K
Thermal Expansion	18.1 x 10 ⁻⁶ K ⁻¹ @ 273 K
Hardness	Knoop 82 with 500g indenter (4)
Specific Heat Capacity	410 J Kg ⁻¹ K ⁻¹ (3)
Dielectric Constant	7.33 at 1 MHz
Youngs Modulus (E)	53.07 GPa (3)
Shear Modulus (G)	25.4 GPa (3)
Bulk Modulus (K)	56.4 GPa
Elastic Coefficients	$C_{11} = 89.2 C_{12} = 40.0 C_{44} = 25.4$ (2)
Apparent Elastic Limit	26.9 MPa (300psi) (4)
Poisson Ratio	0.343
Solubility	0.17g/100g water at 23°C
Molecular Weight	175.36
Class/Structure	Cubic Fm3m (#225) Fluorite structure Cleaves on (111)

(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

(2) I.H.Malitson; J.Opt.Soc.Am. Vol52, p1377, 1962


⁽³⁾ D.Girlich; Elastic Constants of BaF2; Phys.Rev. Vol135, p1826, 1964

⁽⁴⁾ S.Ballard et al; J.Opt.Soc.Am. Vol42, p684, 1952

⁽⁵⁾ US patent. Chemical polish. 4,040,896 1977

⁽⁶⁾ M.Laval et al; Nu. Insts.Meth, V206 p169, 1983

Barium Fluoride (BaF₂)

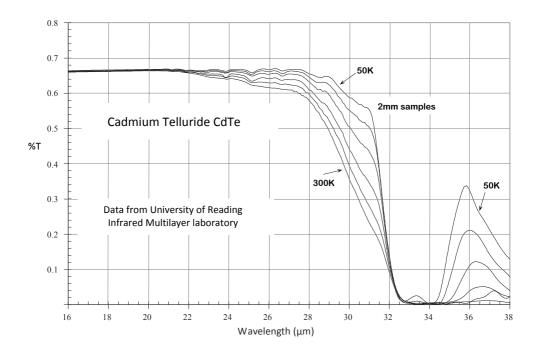
Cadmium Telluride (CdTe) MATERIALS DATA CAUTION: Cadmium salts are considered TOXIC and should be handled with care.

CdTe is rarely used because of its toxicity. The finished optics are not particularly hazardous but should be handled with care. However, difficulties with processing cadmium compounds means that very few optical companies will cut and polish the material. Crystran Ltd does not supply CdTe. This data is provided for reference only. A form of CdTe was originally utilised as the obsolete Kodak designation of IRTRAN-6

APPLICATIONS: Cadmium Telluride can be used for spectroscopy and where deep IR transmission is required. It is relatively workable and offers transmission to >20 μ m. CdTe has some application for solar cells.

Transmission Range	0.85 to 28μm (1)(3)
Refractive Index	2.653 @ 10μm (1)
Reflection Loss	32% @ 10μm
Absorption Coefficient	n/a
Reststrahlen Peak	n/a
dn/dT	50 x 10 ⁻⁶ K ⁻¹
$dn/d\mu = 0$	n/a
Density	6.2 g cm⁻³ (2)
Melting Point	1092°C (4)
Thermal Conductivity	6.2 W m ⁻¹ K ⁻¹ at 293 K
Thermal Expansion	5.9x10 ⁻⁶ K ⁻¹ at 293 K
Hardness	Knoop 54 (3)
Specific Heat Capacity	210 J Kg ⁻¹ K ⁻¹ at 293 K
Dielectric Constant	11 @ 1MHz
Youngs Modulus (E)	36.52 GPa
Shear Modulus (G)	n/a
Bulk Modulus (K)	25 GPa
Elastic Coefficients	C ₁₁ =53.51; C ₁₂ =36.81; C ₄₄ =19.94
Apparent Elastic Limit	5.9 MPa (3)
Poisson Ratio	0.41
Solubility	Insoluble in water
Molecular Weight	240.02
Class/Structure	Cubic ZnS (110) cleavage

⁽³⁾ Hawkins, Sherwood, Djotni; Mid IR Filters for astronomical and remote sensing instrumentation, invited paper SPIE Conference, Glasgow (2008)


⁽¹⁾ Handbook Optical Constants, ed. Palik, V1, ISBN 0-12-544420-6

⁽²⁾ Capper; Properties of Narrow Gap Cadmium-Based Compounds, IET, <u>ISBN</u> 978-0-85296-880-2

⁽⁴⁾ David R Lide; CRC Handbook of Chemistry and Physics, 78th ed (1997)

Cadmium Telluride (CdTe)

μm	No	μm	No	μm	No
0.8	2.876	1.0	2.840	2.0	2.713
2.5	2.702	3.0	2.695	3.5	2.691
4.0	2.6807	5.0	2.684	6.0	2.681
7.0	2.679	8.0	2.677	10.0	2.653
12.5	2.646	15.5	2.6407	20.0	2.614
22.2	2.601	24.8	2.5801	26.32	2.570
27.03	2.564				

Caesium Bromide (CsBr)

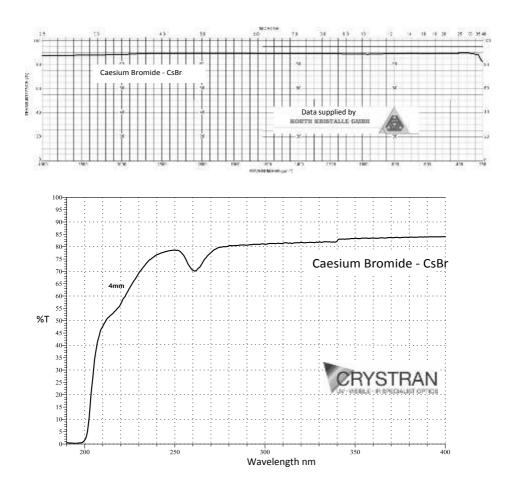
MATERIALS DATA

CsBr is grown by sealed ampoule Stockbarger technique. It is a soft pliable material. **APPLICATIONS:** Caesium Bromide has limited application in the deep IR. It is slightly more amenable to optical working than CsI and is sometimes used as a beamsplitter component in wide-band spectrophotometers

0.25 to 40µm (1) 1.6612 at 11µm (1) 11.6% at 11µm (2 surfaces) n/a 121.2µm (2) -84 x 10⁻⁶/°C at 0.6μm (5) 5.3um 4.44 g/cc 636 °C 0.94 W m⁻¹ K⁻¹ at 273K 47.9 x 10⁻⁶ K⁻¹ at 273K Knoop 19.5 with 200g indenter 263.8 J Kg⁻¹ K⁻¹ (3) 6.51 at 2 MHz 15.85 GPa (4) 7.5 GPa 13.01 GPa C₁₁=30.97; C₁₂=4.03; C₄₄=7.5 8.4 MPa (1220 psi) (4) 0.279 124.3g/100g water at 273K 212.83 Cubic CsCl, Pm3m, no cleavage planes

⁽¹⁾ Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

⁽²⁾ Mitsuishi et al., J Opt Soc. Am. V52, p14, 1962


⁽³⁾ Kelly, Bureau of Mines Bulletin, No371, p51, 1934

⁽⁴⁾ S.Ballard et al; J.Opt.Soc.Am. Vol42, p684, 1952

⁽⁵⁾ H.H.Li; J.Phys. Chem. Ref. Data. Vol 5, No 2. 1976

Caesium Bromide (CsBr)

μm	No	μm	No	μm	No
0.5	1.70896	1.0	1.67793	2.0	1.67061
3.0	1.66901	4.0	1.66813	5.0	1.66737
6.0	1.66659	7.0	1.66573	8.0	1.6477
9.0	1.6637	10.0	1.66251	11.0	1.6612
12.0	1.65976	13.0	1.6582	14.0	1.6561
15.0	1.65468	16.0	1.65272	17.0	1.65062
180	1.64838	19.0	1.646	20.0	1.64348
21.0	1.6408	22.0	1.63798	23.0	1.635
25.0	1.62856	26.0	1.62509	27.0	1.62146
28.0	1.61764	29.0	1.61365	30.0	1.60947
31.0	1.6051	32.0	1.60053	33.0	1.59576
34.0	1.59078	35.0	1.58558	36.0	1.58016

Caesium Iodide (CsI)

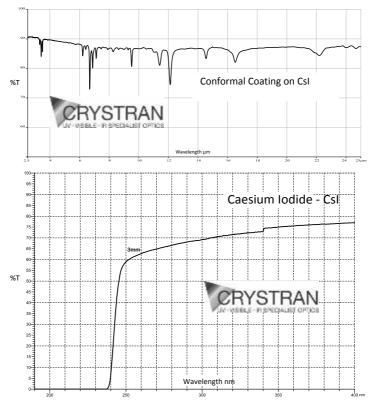
Caesium Iodide is grown by sealed ampoule Stockbarger techniques with ingots of approximately 70mm diameter. Csl is very soft and pliable.

APPLICATIONS: Caesium lodide is the material with the deepest known IR transmission, and is sometimes used for components in the widest range spectrophotometers. An extremely soft material, Caesium lodide is extremely difficult to polish, and so performance is compromised for range. Doped with Thallium, CsI(TI) is a useful scintillator which emits at a wavelength that is a good match for Silicon photodiodes. Arrays of Caesium lodide(TI) are used in security imaging systems.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility Molecular Weight	0.25 to 55 μ m (1) 1.73916 at 10 μ m (1)(2) 13.6% at 10 μ m n/a 145.8 μ m -99.3 x 10 ⁻⁶ /°C (2) 6 μ m 4.51 g/cc 621 °C 1.1 W m ⁻¹ K ⁻¹ at 298 K (3) 48.3 x 10 ⁻⁶ K ⁻¹ at 293 K (3) Knoop 20 with 200g indenter 201 J Kg ⁻¹ K ⁻¹ (4) 5.65 at 1 MHz 5.3 GPa 6.24 GPa 12.67 GPa C ₁₁ =24.6 C ₁₂ =6.7 C ₄₄ =6.24 5.6 MPa (810psi) 0.214 44 g/100 g water at 0 °C
Molecular Weight Class/Structure	259.83 Cubic CsCl, Pm3m, no cleavage, deforms
Classy Structure	Cubic CSCI, FIIISIII, IIO Cleavage, UEIOIIIIS

(1) Handbook Optical Constants, ed Palik, V2, ISBN 0-12-544422-2

(2) Rodney, J.Opt.Soc.Am. V45, p987, 1955



⁽³⁾ Combes et al, J.Opt.Soc.Am. V41, p215, 1951

⁽⁴⁾ Kelly, Bureau of Mines Bulletin, No371, p51, 1934

Caesium Iodide (CsI)

μm	No	μm	No	μm	No
0.5	1.8064	1.0	1.7572	2.0	1.7466
3.0	1.7440	4.0	1.7431	5.0	1.7424
6.0	1.7418	7.0	1.7412	8.0	1.7406
9.0	1.7399	10.0	1.7392	11.0	1.7384
12.0	1.7375	13.0	1.7365	14.0	1.7355
15.0	1.7344	16.0	1.7332	17.0	1.7319
18.0	1.7306	19.0	1.7291	20.0	1.7276
21.0	1.7260	22.0	1.7244	23.0	1.7226
24.0	1.7207	25.0	1.7188	26.0	1.7168
27.0	1.7147	28.0	1.7125	29.0	1.7101
30.0	1.7077	31.0	1.7052	32.0	1.7027
33.0	1.7000	34.0	1.6972	35.0	1.6943
36.0	1.6913	37.0	1.6882	38.0	1.6849
39.0	1.6816	40.0	1.6781	41.0	1.6746
42.0	1.6709	43.0	1.6671	44.0	1.6631
45.0	1.6591	46.0	1.6549	47.0	1.6505
48.0	1.6460	49.0	1.6414	50.0	1.6366

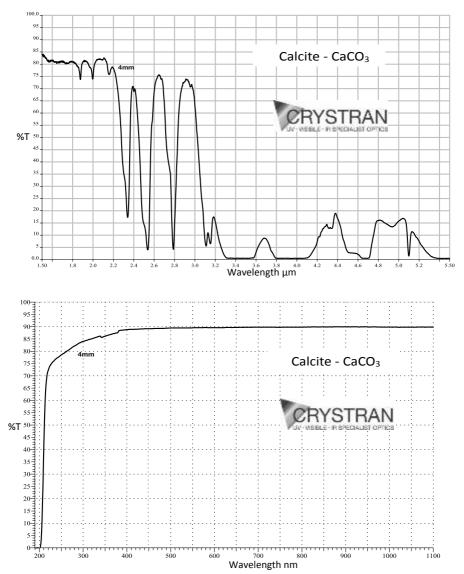
Calcite (CaCO₃)

MATERIALS DATA

Calcite is mined naturally, not manufactured synthetically. Crystran Ltd has a stock of small calcite "rhombs" of good clear optical quality. Calcite cuts and polishes well.

APPLICATIONS: Calcite, or Iceland Spar, is a strongly birefringent material and is used for polarisers and retardation plates.

Transmission Range	0.3 to 2.3μm
Refractive Index	No 1.6654 at 0.51µm
Reflection Loss	11.7% at 0.51μm (2 surfaces)
Absorption Coefficient	n/a
Reststrahlen Peak	n/a
dn/dT	3 (para) 13 (perp) x 10⁻6 K⁻¹ at 0.5µm
dn/dµ = 0	n/a
Density	2.71 g/cc
Melting Point	825°C (Decomposes)
Thermal Conductivity	5.526 (para) 4.646 (perp) W m ⁻¹ K ⁻¹ at 273K
Thermal Expansion	25 (para) 5.8 (perp) x 10 ⁻⁶ K ⁻¹ at 273K
Hardness	Knoop 155 Moh 3
Specific Heat Capacity	852 J Kg ⁻¹ K ⁻¹
Dielectric Constant	8 (para) 8.5 (perp) at 10kHz at 293K
Youngs Modulus (E)	72.35 (perp) 88.19 (para) GPa
Shear Modulus (G)	35 GPa
Bulk Modulus (K)	129.53 GPa
Elastic Coefficients	C ₁₁ =137; C ₁₂ =45; C ₁₃ =45; C ₁₄ =21; C ₃₃ =79
Apparent Elastic Limit	4.83 MPa (700 psi)
Poisson Ratio	n/a
Solubility	0.0014g/100g water at 25°C
Molecular Weight	100.09
Class/Structure	Trigonal (hex), R3c, (1014) cleavage (1)


CLEAVAGE PLANE : There can be confusion in the definition of the cleavage plane in calcite. Conventionally this has always been referred to as {1011} but recent papers on AFM studies use {1014}. Calcite cleaves between the bonds of the CO_3 groups (in the CO_3 layer). The CO_3 group are offset relative to each other and inclined to the c-axis giving 3 cleavage directions defining a rhomb. Following the {1011} nomenclature the unit cell requires ¼ the length of the c axis as measured from XRD (on a dimension 4 times longer). The correct Miller indices are {1014} but the conventional {1011} is often used in order not to confuse and for easier comparison.

(1) Private Communication. J.A.Elliott. Material Science, University of Cambridge. 2011

Calcite (CaCO₃)

μm	No	Ne	μm	No	Ne
0.20	1.9028	1.5765	0.30	1.7196	1.5137
0.41	1.6801	1.4954	0.51	1.6653	1.4896
0.64	1.6550	1.4849	0.71	1.6521	1.4835
0.80	1.6487	1.4822	0.91	1.6458	1.4810
1.04	1.6428	1.4799	1.50	1.6346	1.4774
1.91	1.627	1.4757	2.10	1.622	1.4749

Calcium Fluoride (CaF₂)

MATERIALS DATA

Calcium fluoride is grown by vacuum Stockbarger technique in diameters of up to about 250mm. Material for IR use is grown using naturally mined fluorite, in large quantities at a relatively low cost. For UV applications chemically prepared raw material is generally used. For Excimer applications, we use only the highest grade of specially selected material and crystal.

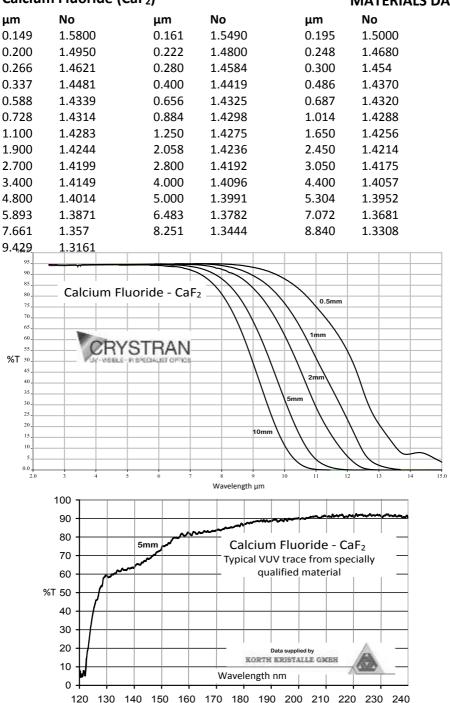
APPLICATIONS: Calcium Fluoride has widespread IR application as spectroscopic windows, prisms and lenses. Especially pure grades of Calcium Fluoride find useful application in the UV and as UV Excimer laser windows. Specially selected material is used for Raman work as it has no interfering fluorescence peaks. Use the links on page 30 for more data on Raman Grade and Crystal Quality.

Transmission Range	0.13 to 10µm
Refractive Index	1.39908 at 5μm (1) (2)
Reflection Loss	5.4% at 5µm
Absorption Coefficient	7.8 x 10 ⁻⁴ cm ⁻¹ @ 2.7μm
Reststrahlen Peak	35μm
dn/dT	-10.6 x 10 ⁻⁶ K ⁻¹ (3)
dn/dµ = 0	1.7μm
Density	3.18 g/cc
Melting Point	1360°C
Thermal Conductivity	9.71 W m ⁻¹ K ⁻¹ (4)
Thermal Expansion	18.85 x 10 ⁻⁶ K ⁻¹ (5)(6)
Hardness	Knoop 158.3 (100) with 500g indenter
Specific Heat Capacity	854 J Kg ⁻¹ K ⁻¹
Dielectric Constant	6.76 at 1MHz (7)
Youngs Modulus (E)	75.8 GPa (7)
Shear Modulus (G)	33.77 GPa (7)
Bulk Modulus (K)	82.71 GPa (7)
Elastic Coefficients	C ₁₁ = 164 C ₁₂ = 53 C ₄₄ = 33.7 (7)
Apparent Elastic Limit	36.54 MPa
Poisson Ratio	0.26
Solubility	0.0017g/100g water at 20°C
Molecular Weight	78.08
Class/Structure	Cubic Fm3m (#225) Fluorite structure
	Cleaves on (111)

(1) Handbook Optical Constants, ed Palik, V2, ISBN 0-12-544422-2

⁽²⁾ Dressler et al., Cryst.Res.Technol. V27, p413, 1992

⁽³⁾ I.H.Malitson; J.Opt.Soc.Am. Vol52, p1377, 1962


⁽⁴⁾ Ballard et al; Rev. Sci. Instr., V21, p905, 1950

⁽⁵⁾ Batchelder & Simmons, J.Chem. Phys. V41, p2324 N8 1964

⁽⁶⁾ Schumann & Neumann, Crys. Res. Tech V19, 1984

⁽⁷⁾ Dickinson, IR laser windows, AFCRL-TR-0318, Air Force, Cambridge 1975

Calcium Fluoride (CaF₂)

Diamond (C) - Cubic Carbon

MATERIALS DATA

Diamond is available as single crystal (Type IIa) natural or synthetic or as CVD film. Single crystal is available economically up to about 4mm diameter. CVD diamond of 75mm diameter is available. The IR transmission has a range of absorptions in the mid-IR between 2.5 and 7 μ m due to inherent lattice resonance. The UV transmission may be limited to 350nm in poorer quality samples. Single crystal diamond is selected into four forms: Ia ~98% of natural yield (>100ppm Nitrogen - yellow)

Ib ~0.1% of natural yield (~100ppm Nitrogen)

IIa ~2% of natural yield (1ppm Nitrogen)

IIb - Synthetic only (100ppm boron for electronic applications)Only Type IIa is used for optical applications. CVD diamond transmission and

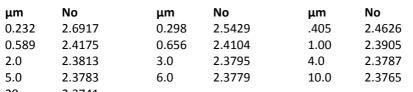
characteristics are very similar to Type IIa.

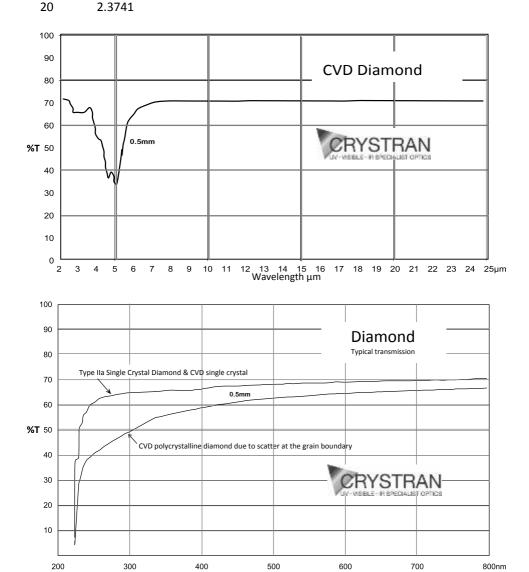
APPLICATIONS: Diamond is used for transmission windows and domes.

Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility Molecular Weight	3497°C (Oxidises in air at 700°C - see note) 2600 W m ⁻¹ K ⁻¹ @ 273K (2) 1 x 10 ⁻⁶ K ⁻¹ at 293K Knoop 5700 to 10400 502 J Kg ⁻¹ K ⁻¹ @ 300K (4) 5.68 @ 1.68Mhz at 300K (2) 1050 GPa n/a 442 GPa C ₁₁ =1076; C ₁₂ =125; C ₄₄ =577 276 MPa 0.16 to 0.29 Insoluble in water 12.01
Molecular Weight	12.01
Class/Structure	Cubic Diamond, Fd3m

Note:Being a form of carbon, diamond oxidises in air over 700°C. In the absence of oxygen such as in a flow of argon gas, diamond can be heated to 1700°C. The surface blackens but can be recovered by polishing.

⁽¹⁾ Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6


⁽²⁾ Properties of Polycrystalline Diamond, Sussmann et. al. Diamond & Rel. Mat. 3(1994) 303-312


⁽³⁾ Fontenella et. al. App. Optics 16, 2949 (1977)

⁽⁴⁾ Slack & Bartram J.Appl. Phys. 46, 89 (1975)

Diamond (C) - Cubic Carbon

MATERIALS DATA

Wavelength nm

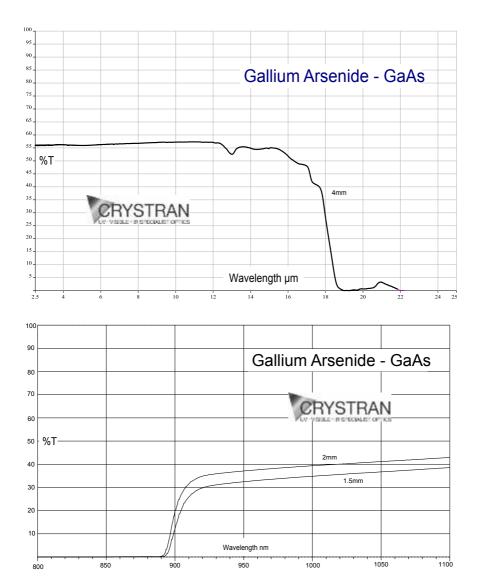
Gallium Arsenide (GaAs)

MATERIALS DATA

Gallium Arsenide is produced by Czochralski or horizontal Bridgeman crystal growth techniques. As it is arsenic bearing, precautions in handling and working should be observed.

APPLICATIONS: Gallium Arsenide has specialist applications in far IR optics and lens systems.

⁽¹⁾ Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6


⁽²⁾ Deutch, J.Electron. Mater. V4 p679

⁽³⁾ Sze, Physics of Semiconductor Devices, Wiley 1981

⁽⁴⁾ M.Cardona, Proc. Int. Conf. Semicond. Phys., Prague 1960 p.388.

Gallium Arsenide (GaAs)

μm	No	μm	No	μm	No
1.033	3.492	1.550	3.3737	2.066	3.338
2.480	3.324	3.100	3.3125	4.133	3.3027
4.959	3.2978	6.199	3.2921	7.293	3.2874
8.266	3.2831	9.537	3.2769	10.33	3.2727
11.27	3.2671	12.40	3.2597	13.78	3.2493
15.50	3.2336	17.71	3.2081	19.07	3.1866

Gallium Lanthanum Sulphide (GLS)

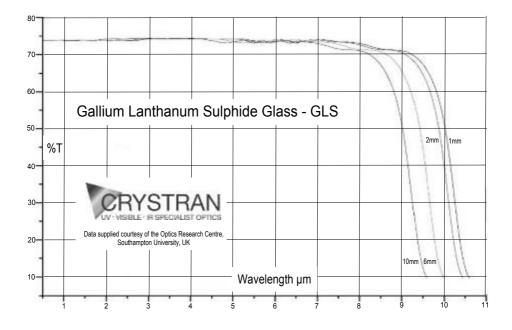
MATERIALS DATA

Gallium Lanthanum Sulphide (GLS) glass is produced by proprietary processes under conditions of the highest purity. Particular effort is made in removing transition metal impurities to a level of better than 1 ppm total metallic impurities with SH⁻ and OH⁻ less than 1 ppm. GLS is routinely processed from ingots of 500 grams. Other glass compositions are available including rare earth doped (Ce, Pr, Nd, Tb, Dy, Ho, Er, Tm, Yb), halide (F, Cl), and Ag doped samples.

APPLICATIONS: Gallium Lanthanum Sulphide is a chalcogenide glass, an alternative to toxic arsenic-based glasses. Developed at Southampton University, GLS has found use in a wide range of optoelectronic applications and is available as polished optical components, thin and thick films and in optical fibre form.

Transmission Range	0.5 to 10μm
Refractive Index	2.398 at 1.014µm
Reflection Loss	29% at 1.014µm
Absorption Coefficient	<0.005 cm ⁻¹
Reststrahlen Peak	n/a
dn/dT	+75 x 10⁻⁰ /°C
dn/dµ = 0	4μm
Density	4.04 g/cc
Melting Point	830°C
Thermal Conductivity	0.43 W m ⁻¹ K ⁻¹ at 273K
Thermal Expansion	10 x 10 ⁻⁶ K ⁻¹ at 273K
Hardness	Knoop 206 with 200g indenter
Specific Heat Capacity	0.54 J g ⁻¹ K ⁻¹
Dielectric Constant	8.1 at 1KHz
Youngs Modulus (E)	59 GPa
Shear Modulus (G)	23 GPa
Bulk Modulus (K)	24.5 GPa
Elastic Coefficients	n/a
Apparent Elastic Limit	n/a
Poisson Ratio	0.24
Solubility	Negligible in water
Molecular Weight	276.9
Class/Structure	Amorphous glass
Damage Threshold >200MW cm ⁻²	at 1550nm

Damage Threshold >200MW cm⁻² at 1550nm Acousto-optic Figure of Merit: $M2 = 6 \times 10^{-15}$ Verdet Constant = 0.205 min/Oe/cm


Petrovich, Hewak et al Journal of Non-Crystalline Solids 326&327 (2003) 93-97

Gallium Lanthanum Sulphide (GLS)

μm	No	μm	No
0.5461	2.522	0.5790	2.500
0.6678	2.458	0.7065	2.466
1.3673	2.379	1.7101	2.371

μm	No
0.6439	2.467
1.0140	2.398

Germanium (Ge)

MATERIALS DATA

Germanium is grown using the Czochralski technique by a small number of manufacturers in Belgium, USA, China and Russia. The refractive index of Germanium changes rapidly with temperature and the material becomes opaque at all wavelengths a little above 350°K as the band gap floods with thermal electrons.

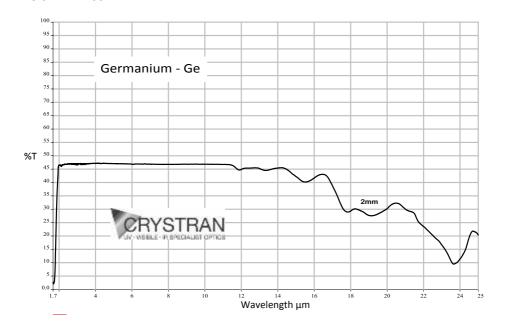
APPLICATIONS: Germanium is a high index material that is used to manufacture Attenuated Total Reflection (ATR) prisms for spectroscopy. Its refractive index is such that Germanium makes an effective natural 50% beamsplitter without the need for coatings. Germanium is also used extensively as a substrate for production of optical filters. Germanium covers the whole of the 8-14µm thermal band and is used in lens systems for thermal imaging. Germanium can be AR coated with Diamond producing an extremely tough front optic.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak	1.8 to 23μm (1) 4.0026 at 11μm (1)(2) 53% at 11μm (Two surfaces) <0.027 cm ⁻¹ @ 10.6μm n/a
dn/dT	396 x 10 ⁻⁶ K ⁻¹ (2)(6)
$dn/d\mu = 0$	Almost constant
Density	5.33 g/cc
Melting Point	936 °C (3)
Thermal Conductivity	58.61 W m ⁻¹ K ⁻¹ at 293K (6)
Thermal Expansion	6.1 x 10 ⁻⁶ K ⁻¹ at 298K (3)(4)(6)
Hardness	Кпоор 780
Specific Heat Capacity	310 J Kg ⁻¹ K ⁻¹ (3)
Dielectric Constant	16.6 at 9.37 GHz at 300K
Youngs Modulus (E)	102.7 GPa (4) (5)
Shear Modulus (G)	67 GPa (4) (5)
Bulk Modulus (K)	77.2 GPa (4)
Elastic Coefficients	C ₁₁ =129; C ₁₂ =48.3; C ₄₄ =67.1 (5)
Apparent Elastic Limit	89.6 MPa (13000 psi)
Poisson Ratio	0.28 (4) (5)
Solubility	Insoluble in water
Molecular Weight	72.59
Class/Structure	FCC Cubic, Fm3m (#225) Diamond structure

⁽⁶⁾ Hawkins, Sherwood, Djotni: Mid IR Filters for astronomical and remote sensing instrumentation. Invited Paper SPIE Conference Glasgow 2008

⁽¹⁾ Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6

⁽²⁾ Li, Refractive Index of Germanium etc, J.Phys Chem, V9, p561, 1980


⁽³⁾ Pearson & Brattain, Proc. Inst. Radio Eng. V43, p1794, 1955

⁽⁴⁾ Fine, J.App.Phys, V24, p338, 1953

⁽⁵⁾ Wortman & Evans, V36, (1), P153 (1965)

Germanium (Ge)

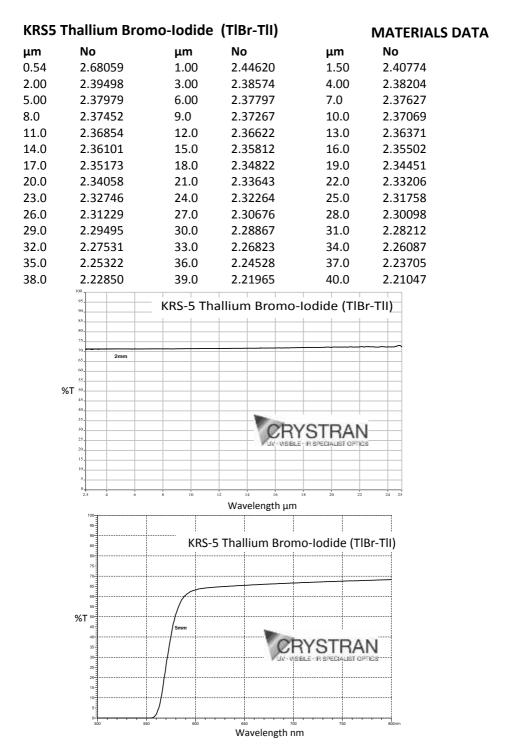
μm	No	μm	No	μm	No
2.058	4.102	2.153	4.0919	2.313	4.0786
2.437	4.0708	2.577	4.0609	2.714	4.0562
2.998	4.0452	3.303	4.0369	4.258	4.0216
4.866	4.017	6.238	4.0094	8.660	4.0043
9.720	4.0034	11.04	4.0026	12.00	4.0023
13.02	4.0021				

KRS5 Thallium Bromo-Iodide (TIBr-TII)

CAUTION: Thallium salts are considered TOXIC and should be handled with care.

KRS5 crystallises by the sealed-ampoule Stockbarger technique. Starting materials of the highest purity are selected to ensure that there are no anionic absorption bands between $2\mu m$ and $16\mu m$ and all crystals are checked for quality by using a pathlength of 120mm.

APPLICATIONS: KRS5 is a deep IR material with a high refractive index, KRS5 is used extensively in spectroscopy for ATR prisms, windows and lenses. In conjunction with Germanium, KRS5 can also be used in thermally compensated IR imaging systems.


Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility	0.6 to $40\mu m$ 2.371 at $10\mu m (1) (3)$ 28.4% at $10\mu m (2 surfaces)$ n/a n/a -235 x $10^{-6} K^{-1}$ 7 μm 7.371 g/cc (3) 414.5°C (3) 0.544 W m ⁻¹ K ⁻¹ at 293K 58 x $10^{-6} K^{-1} (2)$ Knoop 40.2 (2) 200 J Kg ⁻¹ K ⁻¹ at 273K 32.5 15.85 GPa (2) 5.79 GPa (2) 19.78 GPa (2) C ₁₁ =331; C ₁₂ =13.2; C ₄₄ =5.79 26.2 MPa (2) 0.369 0.05g/100g water at 293K
Molecular Weight	42 mole% TIBr; 58 mole% TII
Class/Structure	Cubic, CsCl structure, Pm3m, No cleavage (3)

⁽¹⁾ Rodney and Malitson J.Opt Soc.Am. V46, p 956, 1953

⁽²⁾ Combes, Ballard, McCarthy: J.Opt Soc.Am. V41, p 215, 1951

⁽³⁾ Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

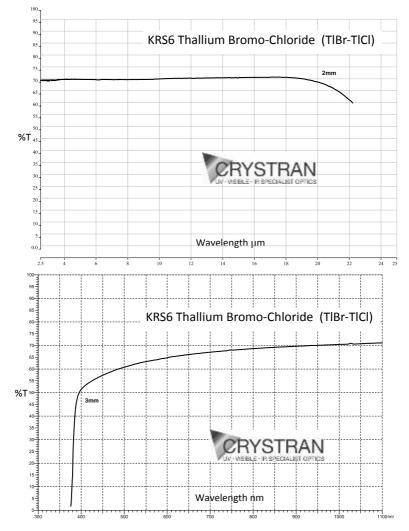
KRS6 Thallium Bromo-Chloride (TlBr-TlCl)

CAUTION: Thallium salts are considered TOXIC and should be handled with care.

KRS6 crystals are grown by the sealed-ampoule Stockbarger technique. Starting materials of the highest purity are selected to ensure that there are no anionic absorption bands between 2 and 16µms and all crystals are checked for quality by using a pathlength of 120mm. Thallium salts are toxic, and KRS6 has enough solubility to require extreme caution. Careful handling with plastic gloves covered with soft cotton gloves as appropriate to delicate optics is required.

APPLICATIONS: KRS6 has only a few applications. Occasionally, it is required for research.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility	0.4 to 25μm 2.1723 at 11μm (1) 24.0% at 11μm (2 surfaces) n/a 91.5μm n/a 5μm 7.18 g/cc (3) 423°C (3) 0.7 W m ⁻¹ K ⁻¹ at 329°K 50 x 10 ⁻⁶ K ⁻¹ (2) Knoop 29.9 with 500g indenter (2) 188 J Kg ⁻¹ K ⁻¹ 32 at 1 MHz 20.68 GPa (2) 8.48 GPa (2) 22.81 GPa (2) C ₁₁ =38.5; C ₁₂ =14.9; C ₄₄ =7.37 20.7 MPa (3000 psi) 0.219 0.3g/100g water at 20°C
Molecular Weight	40 mole% TIBr; 60 mole% TICl
Class/Structure	Cubic, CsCl structure, Pm3m, no cleavage planes



⁽¹⁾ Hettner and Leisegang; Optik, V3, p305, 1948

⁽²⁾ Combes, Ballard, McCarthy: J.Opt Soc.Am. V41, p 215, 1951

⁽³⁾ Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

KRS6 Thallium Bromo-Chloride (TlBr-TlCl) MATERIALS DATA μm No μm No No μm 0.6 2.3294 0.7 2.2982 0.8 2.2660 0.9 2.251 1.0 2.2404 1.5 2.2148 2.0 3.0 2.2059 2.199 4.0 2.1956 5.0 2.1928 6.0 2.190 7.0 2.187 8.0 2.1839 9.0 2.1805 10.0 2.1767 11.0 2.1723 12.0 2.1674 13.0 2.162 14.0 2.1563 15.0 2.1504 16.0 2.1442 17.0 2.1377 18.0 19.0 2.1236 2.1309 20.0 2.1154 21.0 2.1067 22.0 2.0976 23.0 2.0869 24.0 2.0752

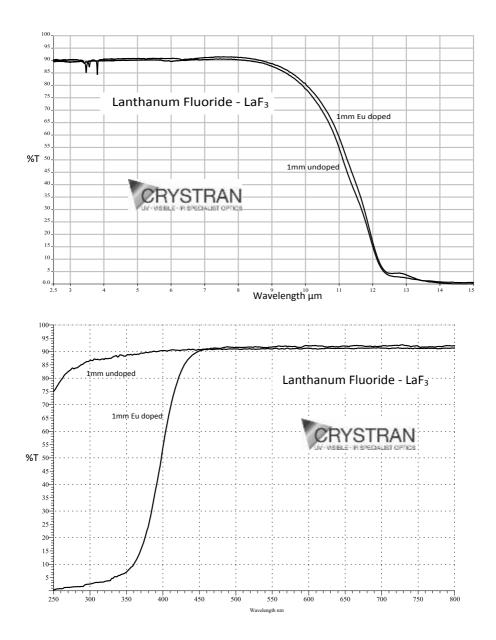
Lanthanum Fluoride (LaF₃)

MATERIALS DATA

Lanthanum Fluoride is grown as small ingots of about 10mm diameter as it is difficult to anneal. Doped with Europium, it is a pale yellow colour.

APPLICATIONS: Lanthanum Fluoride is not often used as an optical material. Lanthanum Fluoride is usually doped with Europium at a nominal level of 0.3% mole. In this form, the usual application is as the active element in an ion-selective electrode for the detection and measurement of Fluoride ions in solution. Use the QR link on page 30 for application notes on ion-selective electrodes.

Transmission Range	0.2 to 11μm
Refractive Index	No 1.506 at 0.55μm
Reflection Loss	10.3% at 0.55μm
Absorption Coefficient	n/a
Reststrahlen Peak	n/a
dn/dT	n/a
dn/dμ = 0	5.94 g/cc
Density	1493 °C (1)
Melting Point	5.1 W m ⁻¹ K ⁻¹ at 300K
Thermal Conductivity	11.0x10 ⁻⁶ (para) 15.8x10 ⁻⁶ /K(perp) at 298K (2)
Thermal Expansion	Moh 4.5
Hardness	506 J Kg ⁻¹ K ⁻¹
Specific Heat Capacity	14 (3)
Dielectric Constant	n/a
Youngs Modulus (E)	n/a
Shear Modulus (G)	n/a
Bulk Modulus (K)	n/a
Elastic Coefficients	n/a
Apparent Elastic Limit	n/a
Poisson Ratio	n/a
Solubility	lnsoluble in water
Molecular Weight	195.9
Molecular Weight	195.9
Class/Structure	Trigonal (hex), P6₃/mcm (2), no cleavage


¹⁾ Jones and Shand, J.Crys.Growth. 2 (1968) p361

⁽²⁾ Sher, Solomon, Lee, and Meuller. Phys.Rev. 144, p593 (1966)

⁽³⁾ Electronic Processes in Ionic Crystals (OU Press, NY, 1940) p.41.

Lanthanum Fluoride (LaF₃)

μm	No	Ne	μm	No	Ne
0.254	1.656	1.649	0.405	1.618	1.612
0.436	1.617	1.609	0.547	1.606	1.602

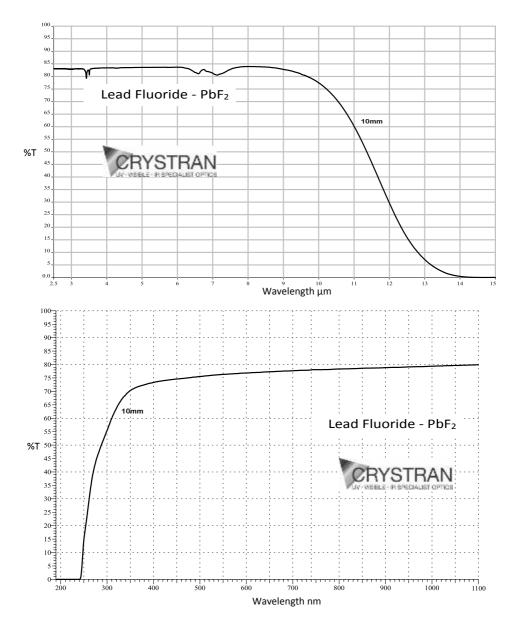
Lead Fluoride (PbF₂)

MATERIALS DATA

CAUTION: Lead salts are considered TOXIC and should be handled with care.

Lead fluoride has been grown by vacuum Stockbarger, but is not known to be in regular production. Crystran hold a very small stock of crystal ingot.

APPLICATIONS: Lead Fluoride has little optical application. Lead Fluoride has been used as a scintillator material as it has excellent stopping power for gamma rays.


Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility Molecular Weight	250nm to 11 μ m 1.7808 @ 5 μ m 12.8% @ 5 μ m (2 surfaces) 0.018 cm ⁻¹ @ 4 μ m n/a n/a 3.3 μ m 7.77 g cm ⁻³ (1) 855°C n/a 29 x 10 ⁻⁶ K ⁻¹ @ 283K Knoop 200 301 J Kg ⁻¹ K ⁻¹ 13 @ 1MHz n/a n/a n/a n/a C ₁₁ =91, C ₁₂ =46, C ₄₄ =23 n/a n/a n/a 0.064 g/100g water at 20°C 245.21
Molecular Weight Class/Structure	245.21 Cubic, CaF2, Fm3m, (111) cleavage

(1) Crystran Data

Lead Fluoride (PbF₂)

μm	No	μm	No	μm	No
0.3	1.93665	0.4	1.81804	0.5	1.78220
0.6	1.76489	0.7	1.75502	0.8	1.74879
0.9	1.74455	1.0	1.74150	3.0	1.72363
5.0	1.70805	7.0	1.68544	9.0	1.65504

Lithium Fluoride (LiF)

MATERIALS DATA

Lithium Fluoride is grown by vacuum Stockbarger technique in ingots approximately 100mm diameter. Lithium Fluoride cleaves easily and must be worked with extreme care. Polishing, particularly steep radii, often causes surface "rip-out".

APPLICATIONS: Lithium fluoride is the material with the most extreme UV transmission of all and is used for special UV optics. Lithium fluoride transmits well into the VUV region at the hydrogen Lyman-alpha line (121nm) and beyond. Lithium fluoride is also used for X-ray monochromator plates where its lattice spacing makes it the most useful analysis crystal.

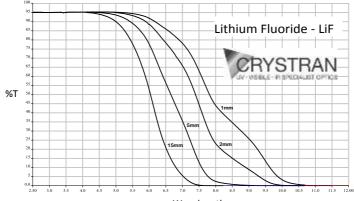
Transmission Range	0.12 to 6μm
Refractive Index	1.392 at 0.6μm (1)
Reflection Loss	5.2% at 0.6μm (2 Surfaces)
Absorption Coefficient	$5.9 \times 10^{-3} \text{ cm}^{-1} \text{at } 4.3 \mu \text{m} @ 300 \text{K} (5)$
Reststrahlen Peak	25μm
dn/dT	-16 x 10 ⁻⁶ at 1.15µm
$dn/d\mu = 0$	1.3μm
Density	2.639 g/cc
Melting Point	848 °C (6)
Thermal Conductivity	11.3 W m ⁻¹ K ⁻¹ at 314 K (2)
Thermal Expansion	$37 \times 10^{-6} \text{ K}^{-1}$ at 283 K (2)
Hardness	Knoop 102 with 600g indenter (2)
Specific Heat Capacity	1562 J Kg ⁻¹ K ⁻¹
Dielectric Constant	0.1
Youngs Modulus (E)	64.97 GPa (2)
Shear Modulus (G)	55.14 GPa (2)
Bulk Modulus (K)	62.03 GPa (2)
Elastic Coefficients	C ₁₁ =112; C ₁₂ =46; C ₄₄ =63.5 (3)
Apparent Elastic Limit	11.2 MPa (1620 psi) (4)
Poisson Ratio	0.326 (calculated)
Solubility	0.27g / 100g water at 20 °C
Molecular Weight	25.94
Class/Structure	Cubic FCC, Fm3m (#221), NaCl Structure (100) cleavage

(4) Ballard et. al. J.Opt. Soc. Am. V42, p684. 1952

⁽¹⁾ Laporte et. al. J.Opt. Soc. Am. V73, No 8, p1062

⁽²⁾ Combes et. al. J.Opt. Soc. Am. V41, p215. 1951

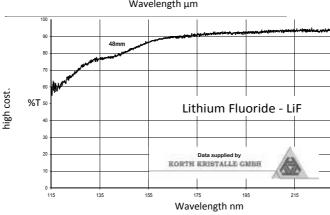
⁽³⁾ Huntingdon, Phys Review. V72, p321, 1947


⁽⁵⁾ H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

⁽⁶⁾ T.B.Douglas & J.L.Dever, J. Am. Chem.Soc, 1954,76 (19), p4826

Lithium Fluoride (LiF)

MATERIALS DATA


μm	No	μm	No	μm	No
0.106	1.9130	0.108	1.8330	0.110	1.7770
0.121	1.6240	0.130	1.5690	0.140	1.5300
0.150	1.5030	0.160	1.4840	0.170	1.4690
0.180	1.4850	0.190	1.4455	0.200	1.4391
0.220	1.4291	0.250	1.4189	0.260	1.4164
0.270	1.4141	0.280	1.4121	0.290	1.4103
0.300	1.4087	0.310	1.4073	0.320	1.4060
0.330	1.4048	0.340	1.4037	0.350	1.4028
0.360	1.4019	0.400	1.3989	0.500	1.3943
0.600	1.3918	0.700	1.3902	0.800	1.3890
0.900	1.3880	1.000	1.3871	1.500	1.3832
2.000	1.3788	2.500	1.37327	3.000	1.3666
3.500	1.3587	4.000	1.3494	4.500	1.3388
5.000	1.3266	5.100	1.3240	5.200	1.3213
5.300	1.3186	5.400	1.3158	5.500	1.3129
5.600	1.3099	5.700	1.3069	5.800	1.3038
5.900	1.3007	6.000	1.2975		

Wavelength µm

Routine transmission at 121nm is usually a minimum of 40% through a 2mm sample. This curve represents the maximum

ideal conditions of material and polish at transmission that we can achieve under

67

Magnesium Fluoride (MgF₂)

MATERIALS DATA

Magnesium Fluoride is grown by vacuum Stockbarger technique in ingots of various diameters. Magnesium Fluoride is a tough material and polishes well. Therefore, it can be worked to the highest standards. MgF2 is slightly birefringent and usually supplied with the optic axis cut perpendicular to the window faces.

APPLICATIONS: Magnesium Fluoride transmits well into the VUV region to the hydrogen Lyman-alpha line (121nm) and beyond. Magnesium Fluoride is used mostly for UV optics and is excellent for Excimer laser applications.

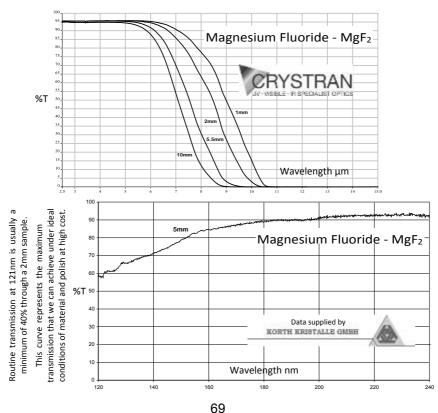
Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT $dn/d\mu = 0$ Density **Melting Point** Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity **Dielectric Constant** Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit **Poisson Ratio** Solubility Molecular Weight Class/Structure

0.12 to 7µm(1) No 1.413 at 0.22µm (4) 5.7% at 0.22µm (2 surfaces) 5.5 x 10⁻³ cm⁻¹ at 2.8µm (5) 20µm (1) 2.3 (para) 1.7 (perp) at 0.4µm (1) 1.4µms 3.1766g/cc at 25°C 1255°C 21 (para) 33.6 (perp) W m⁻¹ K⁻¹ at 300K (3) 13.7 (para) 8.9 (perp) x 10⁻⁶ /K (1) Knoop 415 1003 J Kg m⁻¹ K⁻¹ 4.87 (para) 5.45 (perp) at 1MHz (1) 138 GPa (2) 54.66GPa (2) 101.32 GPa (2) $C_{11}=140 C_{12}=89 C_{44}=57 C_{13}=63 C_{66}=96 (2)$ 49.6 MPa (7200 psi) 0.276 (2) 0.0002g/100g water 62.32 Tetragonal P42/mnm (#136) Rutile Structure. Can cleave on c-axis but not easily.

⁽¹⁾ Duncanson et.al. Proc.Phys.Soc. V72, p1001, 1958

⁽²⁾ Kandil et.al. J.App.Phys. V52, p749, 1981

⁽³⁾ Kashnow & MCarthy, J.Phys.Chem. V30, p813, 1969


⁽⁴⁾ Laporte et. al. J.Opt. Soc. Am. V73, No 8, p1062

⁽⁵⁾ Corning Inc published data

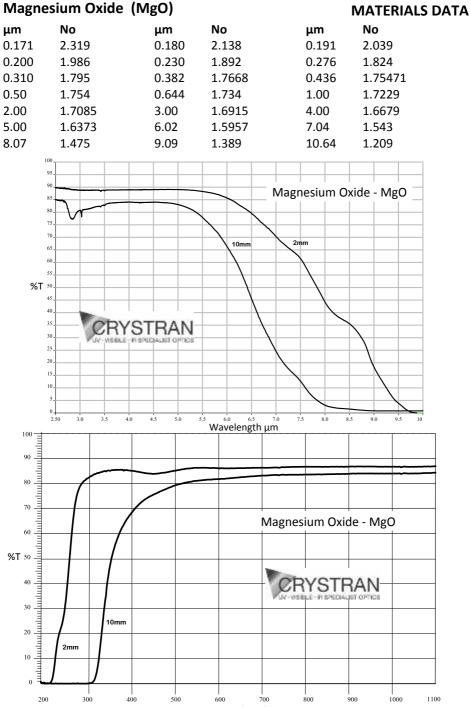
Magnesium Fluoride (MgF₂)

MATERIALS DATA

0		· · · ·		•	
μm	No	Ne	μm	No	Ne
0.1137	1.7805		0.1149	1.7420	
0.1179	1.6800		0.1198	1.6510	
0.121	1.628	1.632	0.130	1.566	1.568
0.140	1.5095	1.523	0.150	1.480	1.494
0.160	1.461	1.475	0.170	1.448	1.462
0.180	1.439	1.453	0.190	1.431	1.444
0.200	1.423	1.437	0.220	1.413	1.426
0.248	1.403	1.416	0.257	1.401	1.414
0.266	1.399	1.412	0.280	1.396	1.409
0.300	1.393	1.405	0.330	1.389	1.402
0.337	1.389	1.401	0.350	1.387	1.400
0.355	1.386	1.399	0.400	1.384	1.396
0.546	1.379	1.390	0.700	1.376	1.388
1.087	1.373	1.385	1.512	1.370	1.382
2.000	1.368	1.379	2.5	1.364	1.375
3.030	1.360	1.370	3.571	1.354	1.364
4.000	1.349	1.359	4.546	1.341	1.350
5.000	1.334	1.343	5.556	1.324	1.332
6.060	1.314	1.321			

Magnesium Oxide (MgO)

MATERIALS DATA

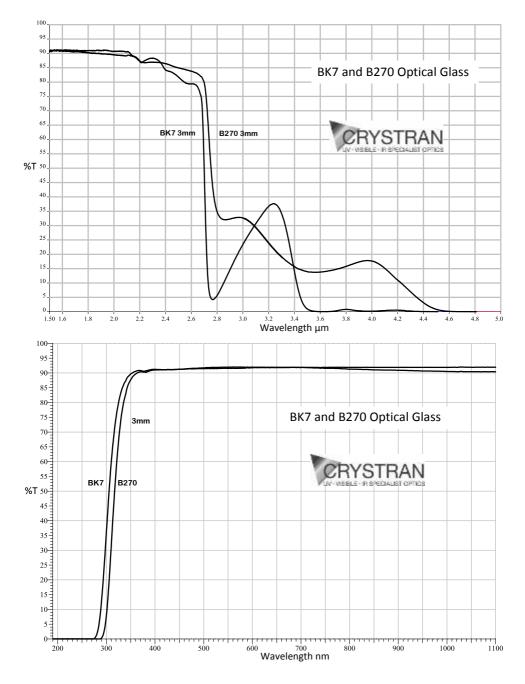

Magnesium Oxide is grown in relatively small sizes, mainly in Japan and China.

APPLICATIONS: Magnesium Oxide can be used for high temperature windows and substrates. HTSC substrates.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit	0.3 to 6 μ m 1.7085 at 2 μ m (1) 12.8% at 2 μ m (2 surfaces) 0.05 cm ⁻¹ at 5.5 μ m n/a +19 x 10 ⁻⁶ K ⁻¹ n/a 3.58 g/cc 2800 °C 42 W m ⁻¹ K ⁻¹ at 273K 10.8 x 10 ⁻⁶ K ⁻¹ at 273K Knoop 692 with 600g indenter 877 J Kg ⁻¹ K ⁻¹ 9.65 at 1 MHz 249 GPa 155 GPa 155 GPa 155 GPa C ₁₁ =294; C ₁₂ =93; C ₄₄ =155 138 MPa (20,000 psi) 2.40
	11 , 12 , 11
Poisson Ratio Solubility Molecular Weight Class/Structure	0.18 0.00062g / 100g water 40.32 Cubic FCC, NaCl, Fm3m, (100) cleavage

Wavelength nm

Optical Glass (N-BK7 types)


MATERIALS DATA

APPLICATIONS: N-BK7 is a Schott[™] designation for the most common Borosilicate Crown glass used for a wide variety of visible applications. The basic data here is given for N-BK7. We recommend that full optical design data on N-BK7 and other glasses be found by referring to the relevant glass manufacturer.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/d μ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K)	350nm to 2.5μm 1.51680 @ 587.5618nm (Yellow Helium Line) 8.1% at 587.5618nm (2 surfaces) n/a n/a n/a 2.51 g/cc 557°C (Transformation Temperature) 1.114 W m ⁻¹ K ⁻¹ 7.1 x 10 ⁻⁶ K ⁻¹ Knoop 610 858 J Kg ⁻¹ K ⁻¹ n/a 82 GPa n/a 34 GPa
Shear Modulus (G)	n/a
Elastic Coefficients	n/a
Apparent Elastic Limit Poisson Ratio Solubility	63.5MPa (9206psi) 0.206 Insoluble in water
Molecular Weight Class/Structure	n/a Amorphous glass

MATERIALS DATA

Optical Glass (N-BK7 types)

Potassium Bromide (KBr)

MATERIALS DATA

Potassium Bromide is produced in large ingots by the Kyropoulos growth method. Potassium Bromide cleaves easily. With care Potassium Bromide can be polished to a high standard under humidity controlled conditions. Polymer coating can be applied.

APPLICATIONS: Potassium Bromide is one of the most useful materials for general purpose spectroscopic windows and applications where sensitivity to moisture is unimportant. Potassium Bromide is the most commonly used beamsplitter material for IR spectrophotometers. It can be supplied with a conformal polymer coating to give some protection against atmospheric humidity.

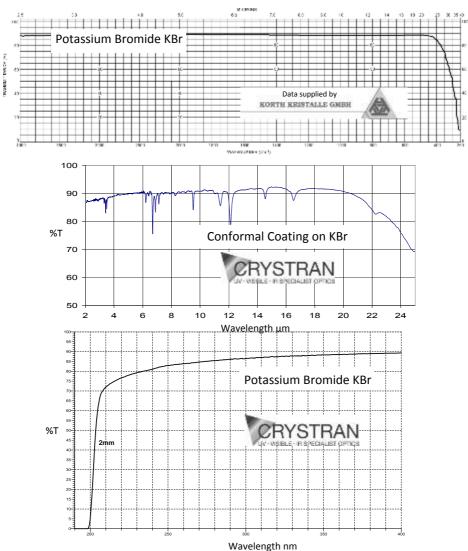
Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Rupture Modulus Poisson Ratio Solubility Molecular Weight	0.23 to $25\mu m$ 1.527 at $10\mu m$ (1) 8.3% at $10\mu m$ 3 x 10^{-6} @ $1064nm : 14 x 10^{-6} cm^{-1} @ 10.6 (7)77.6\mu m-40.83 x 10^{-6} K^{-1} (1)4.2\mu m2.753 g/cc (2)730°C4.816 W m-1 K-1 @ 319K (3)43 x 10^{-6} K^{-1} @ 300K (4)Knoop 7 in <100> with 200g indenter (4)435 J Kg-1 K-14.9 @ 1MHz (6)26.8 GPa (4)5.08 GPa (4)5.08 GPa (4)5.03 GPa (4)C11=34.5 C12=5.4 C44=5.08 (5)3.3 MPa (475psi) (4)0.20353.48g/100g water at 273K119.01$
Class/Structure	Cubic FCC, NaCl, Fm3m, (100) cleavage

⁽¹⁾ Stephens et. al.; J.Opt. Soc. Am. V43, p111, 1953

⁽²⁾ Kohler; Z. Physik. Volk 78, p375. 1932

⁽³⁾ Ballard, McCarthy & Davis; Rev. Sci. Insts, V21, p905, 1970

⁽⁴⁾ Combes, et.al.; J.Opt. Soc. Am. V41, p215, 1951.


⁽⁵⁾ Huntingdon; Phys.Rev. V72, p321, 1947

⁽⁶⁾ Hipple; Dielectric Materials & Applications. Wiley

⁽⁷⁾ H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

Potassium Bromide (KBr)

μm	No	μm	No	μm	No
0.405	1.5898	0.436	1.5815	0.486	1.5718
0.508	1.5684	0.546	1.5639	0.587	1.5600
0.643	1.5559	0.707	1.5524	1.014	1.5441
2.440	1.5373	3.419	1.5361	4.258	1.5352
6.238	1.5329	8.662	1.5290	9.724	1.5270
11.04	1.5240	14.29	1.5150	17.40	1.5039
19.91	1.4929	23.86	1.4714	25.14	1.4632
28.00	1.4423	30.00	1.4253		

Potassium Chloride (KCl)

MATERIALS DATA

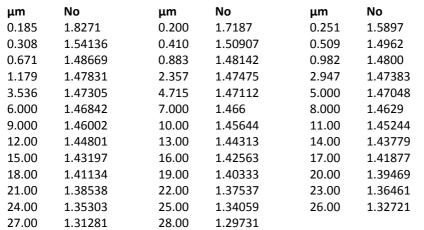
Potassium Chloride is produced in large ingots by the Kyropoulos growth method. Potassium Chloride cleaves easily. With care Potassium Chloride can be polished to a high standard under humidity controlled conditions.

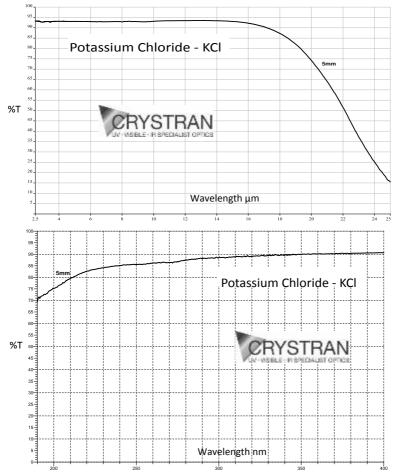
APPLICATIONS: Potassium Chloride is mainly used for CO2 laser protection windows as an inexpensive disposable material with a low refractive index.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Rupture Modulus Poisson Ratio Solubility	0.21 to 20 μ m 1.45644 at 10 μ m (2) 6.7% at 10 μ m 6.5 x 10 ⁻³ cm ⁻³ at 10.6 μ m @ 300K (6) 63.1 μ m -33.2 x 10 ⁻⁶ K ⁻¹ (1) n/a 1.99 g/cc 776°C 6.53 W m ⁻¹ K ⁻¹ at 322K (3) 36 X 10 ⁻⁶ K ⁻¹ at 300k Knoop 7.2 <110>, 9.3 <100> with 200g (4) 690 J Kg ⁻¹ K ⁻¹ 4.64 at 1MHz at 300K 29.67 GPa (4) 6.24 GPa (4) 17.36 GPa (4) C ₁₁ =39.8; C ₁₂ =6.2; C ₄₄ =6.25 (5) 4.4 MPa (635 psi) (4) 0.216 34.7g/100g water
Molecular Weight	74.55
Class/Structure	Cubic FCC, NaCl, Fm3m, (100) cleavage

⁽¹⁾ Mentzel; Z. Physik. V 88, p178. 1934

⁽²⁾ H.H.Li; RI of Alkali Halides. J. Phys and Chem Reference Data V5(2), p421, 1976


⁽³⁾ Ballard, McCarthy & Davis; Rev. Sci. Insts, V21, p905, 1970


⁽⁴⁾ Combes, et.al.; J.Opt. Soc. Am. V41, p215, 1951.

⁽⁵⁾ Galt; Phys.Rev. V36, p1460, 1948

⁽⁶⁾ H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

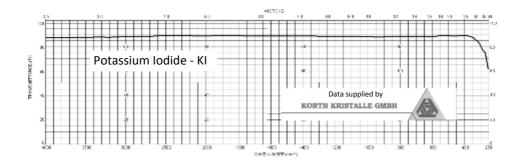
Potassium Chloride (KCl)

Potassium Iodide (KI)

Potassium lodide is produced in large ingots by the Kyropoulos growth method. Potassium lodide cleaves easily. Potassium lodide is only useful in controlled laboratory conditions as it is very soft and very water soluble.

APPLICATIONS: Potassium Iodide has few specific applications but has some uses in the very deep Infra Red.

Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/d μ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit	0.38 to 35μ m 1.6201 at 10μ m (1) 10.6% at 10μ m (2 surfaces) 4.5 x 10^{-3} @ 20μ m (2) 82 to 100μ m -50 x 10^{-6} K ⁻¹ 2.1 μ m 3.12 g/cc 682°C 2.1 W m ⁻¹ K ⁻¹ at 298K 43 x 10^{-6} K ⁻¹ at 298K Moh 5 313 J Kg ⁻¹ K ⁻¹ 4.94 at 2 MHz 31.49 GPa 6.2 GPa 12 GPa C ₁₁ =27.4; C ₁₂ =4.3; C ₄₄ =3.7 n/a n/a 127.5g/100g water at 273K 166.02
Molecular Weight Class/Structure	166.02 Cubic FCC, NaCl, Fm3m, (100) cleavage


(1) K.Korth, Z.Physik. Vol 84, p677-685 (1933)

(2) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

Potassium Iodide (KI)

μm	No	μm	No	μm	No
0.302	1.82769	0.405	1.71843	0.546	1.67310
0.768	1.6494	1.014	1.6396	2.360	1.6295
3.540	1.6275	4.130	1.6268	5.890	1.6252
7.660	1.6235	8.840	1.6218	10.02	1.6201
11.79	1.6172	12.97	1.615	14.14	1.6127
15.91	1.6085	18.10	1.603	19.00	1.5997
20.00	1.5964	21.00	1.593	22.00	1.5895
23.00	1.5858	24.00	1.5819	25.00	1.5775
26.00	1.5729	27.00	1.5681	28.00	1.5629
29.00	1.5571				

Quartz Crystal (SiO₂)

MATERIALS DATA

Quartz is mined naturally, but more commonly produced synthetically in large, longfaceted crystals. Quartz is positive birefringent. Be careful not to confuse terminology in this material, as "Fused Quartz" is often used to denote the glassy non-crystalline form better known as Silica. Normal Quartz is Alpha Quartz and normally RH rotating. LH rotating is available on special order. At temperatures >490°C, Crystal Quartz starts to revert to glassy state, a process which is complete by 530°C.

APPLICATIONS: Optically, Crystalline Quartz is used extensively as a wave retardation medium. The birefringent properties of Quartz are of use in quarter-wave plates and in polarisers. Quartz should not be processed or used at temperatures greater than 490°C. Use the QR link on page 30 for notes on quartz.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT (3) (4) dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients (1) (2) Apparent Elastic Limit Poisson Ratio Solubility	0.18 to 3.5µm and 40µm to 100µm No 1.54421; Ne 1.55333 at 0.6µm 8.8% at 0.6µm (2 surfaces) n/a -/a -/a -5.5 x 10 ⁻⁶ (para) & -6.5 x 10 ⁻⁶ K ⁻¹ (perp) @ 633nm 1.3µm 2.649 g/cc 1710 °C 10.7 (para) 6.2 (perp) W m ⁻¹ K ⁻¹ at 323 K 7.1 (para) 13.2 (perp) X 10 ⁻⁶ K Knoop 741 with 500g indenter 710 J Kg ⁻¹ K ⁻¹ 4.34 (para) 4.27 (perp) at 30MHz 97.2 (para) 76.5 (perp) GPa 31.14 GPa 36.4 GPa $C_{11}=87 C_{12}=7 C_{44}=58 C_{13}=13 C_{14}=(-)18 C_{33}=106$ 41MPa (5950psi) n/a Insoluble in water
Molecular Weight	60.06
Class/Structure	Trigonal (hex) P3(2)21 (RH) and P3(1)21 (LH)

(1)J.V.Atansoff and P.J.Hart, Phys. Rev. Vol.59, pp 85-96 1941

(3) F.J.Micheli, Ann.Physik 4:7 (1902)

⁽²⁾A.W.Lawson, Phys. Rev. Vol 59, pp.838-839, 1941

⁽⁴⁾ Toyoda & Yabe J. Phys. D: Appl. Phys., 1 6 (1983)

Quartz Crystal (SiO₂)

MATERIALS DATA

μm	No	Ne	
0.193	1.661	1.675	
0.222	1.622	1.634	
0.248	1.602	1.613	
0.280	1.585	1.596	
0.325	1.571	1.581	
0.400	1.558	1.567	
0.488	1.550	1.559	
0.532	1.547	1.556	
0.633	1.543	1.552	
0.694	1.541	1.550	
0.780	1.539	1.548	
0.820	1.538	1.547	
0.980	1.535	1.546	
1.320	1.531	1.539	
2.010	1.521	1.529	
	95		
	90		
	85		
			Crystal Qua

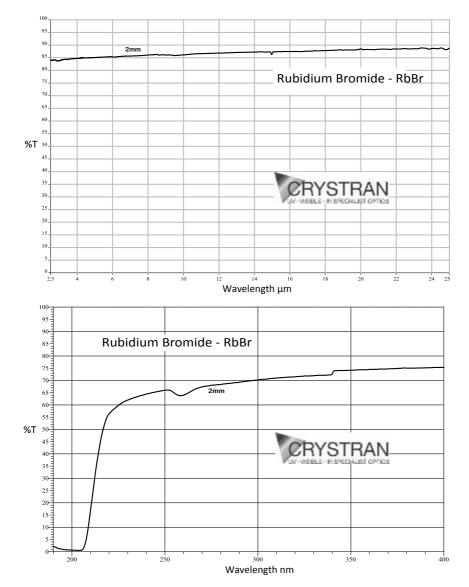
μm	No	Ne
0.213	1.632	1.645
0.226	1.619	1.630
0.257	1.596	1.607
0.308	1.576	1.586
0.351	1.565	1.575
0.458	1.552	1.561
0.515	1.548	1.557
0.590	1.544	1.553
0.670	1.541	1.551
0.755	1.539	1.548
0.800	1.538	1.547
0.860	1.537	1.547
1.064	1.534	1.543
1.550	1.528	1.536

 $\nabla \nabla$ rystal Quartz 2mm 80 75 70 65 QUARTZ & IR-GRADE FUSED SILICA IR Grade Fused Silica 2mm 60 55 %T 50 45 40 35 SI30 25 20 15 10 5 Wavelength µm 0.0. 1.2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.6 3.8 4.0 4.2 4.4 4.6 1.4 1.6 1.8 3.4 4.8 5.0 100 95 Quartz Crystal - SiO2 90 3mm %T 85 80 2 IR SPECIALIST OPTICS 75 Wavelength nm 70 210 220 190 200 205 215 195

Rubidium Bromide (RbBr)

Rubidium Bromide is produced by the sealed-ampoule Stockbarger technique.

APPLICATIONS: Rubidium Bromide has only specialist applications.


Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak	0.22 to 40μm 1.525 at 10μm (1) 8.2% at 10μm (2 surfaces) 1.6 x 10 ⁻³ cm ⁻¹ at 10.6μm n/a
dn/dT	-45 x 10 ⁻⁶ K ⁻¹
$dn/d\mu = 0$	n/a
Density	3.35 g/cc
Melting Point	682°C
Thermal Conductivity	12.2 W m ⁻¹ K ⁻¹ at 378K
Thermal Expansion	36.98 x 10 ⁻⁶ K ⁻¹ at 273K
Hardness	n/a
Specific Heat Capacity	311 J Kg ⁻¹ K ⁻¹
Dielectric Constant	55
Youngs Modulus (E)	n/a
Shear Modulus (G)	n/a
Bulk Modulus (K)	13.7 GPa
Elastic Coefficients	C ₁₁ =31.5; C ₁₂ =4.8; C ₄₄ =3.82
Apparent Elastic Limit	n/a
Poisson Ratio	n/a
Solubility	98g/100g water
Molecular Weight	165.38
Class/Structure	Cubic FCC, NaCl, Fm3m, (100) cleavage

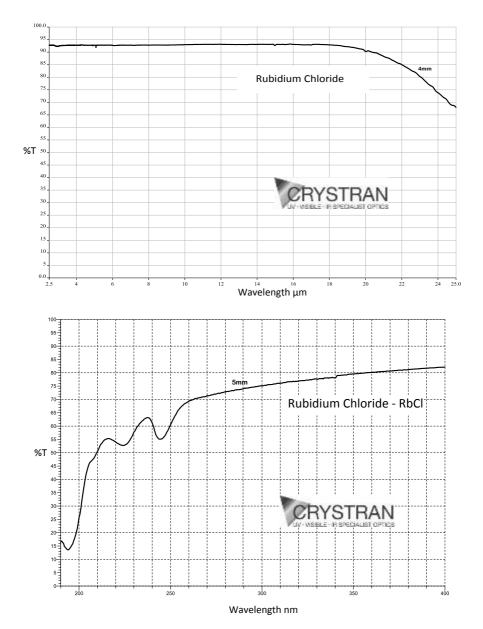
(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

Rubidium Bromide (RbBr)

μm	No	μm	No	μm	No
0.240	1.754	0.350	1.603	0.400	1.583
0.500	1.563	0.600	1.552	0.70	1.546
0.80	1.543	0.90	1.540	1.00	1.538
2.00	1.533	5.00	1.530	10.0	1.525
15.0	1.517	20.0	1.505	25.0	1.489
30.0	1.469	35.0	1.444	40.0	1.412

Rubidium Chloride (RbCl)

Rubidium Chloride is produced by the sealed-ampoule Stockbarger technique.


APPLICATIONS: Rubidium Chloride has only specialist applications.

Transmission Range	0.2 to 25μm
Refractive Index	1.46 at 10.6µm
Reflection Loss	6.8% at 10.6μm (2 surfaces)
Absorption Coefficient	1 x 10 ⁻³ cm ⁻¹ at 10.6μm
Reststrahlen Peak	n/a
dn/dT	-39 x 10 ⁻⁶ K ⁻¹
$dn/d\mu = 0$	n/a
Density	2.8 g/cc
Melting Point	715°C
Thermal Conductivity	7.6 W m ⁻¹ K ⁻¹
Thermal Expansion	36 x 10 ⁻⁶ K ⁻¹ at 300K
Hardness	n/a
Specific Heat Capacity	418 J Kg ⁻¹ K ⁻¹ at 283K
Dielectric Constant	55
Youngs Modulus (E)	n/a
Shear Modulus (G)	n/a
Bulk Modulus (K)	16.3 GPa
Elastic Coefficients	C ₁₁ =36.4; C ₁₂ =6.3; C ₄₄ =4.7
Apparent Elastic Limit	n/a
Poisson Ratio	n/a
Solubility	77g/100g water
Molecular Weight	120.92
Class/Structure	Cubic FCC, NaCl, Fm3m, (100) cleavage

Rubidium Chloride (RbCl)

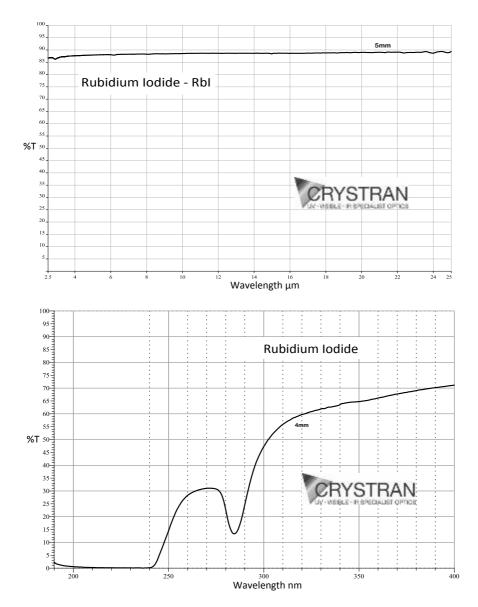
μm	No	μm	No	μm	No
0.248	1.60	0.351	1.53	0.488	1.50
0.590	1.49	0.633	1.49	1.060	1.48
1.550	1.48	2.800	1.48	10.60	1.46

Rubidium Iodide (RbI)

MATERIALS DATA

Rubidium lodide is produced by the sealed-ampoule Stockbarger technique. It is the most deliquescent of the rubidium salts.

APPLICATIONS: Rubidium Iodide has only specialist applications.


Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility Molecular Weight	0.3 to $50\mu m$ 1.609 at $10\mu m$ (1) 10.4% at $10\mu m$ (2 surfaces) n/a n/a -56 x $10^{-6} K^{-1}$ n/a 3.55 g/cc 642°C 9.9 W m ⁻¹ K ⁻¹ 39 x $10^{-6} K^{-1} at 283K$ n/a 242 J Kg ⁻¹ K ⁻¹ at 283K n/a 11 GPa C ₁₁ =27.6; C ₁₂ =3.7; C ₄₄ =2.79 n/a n/a 152g/100g water 212.37
Molecular Weight	212.37
Class/Structure	Cubic FCC, NaCl, Fm3m, (100) cleavage

(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

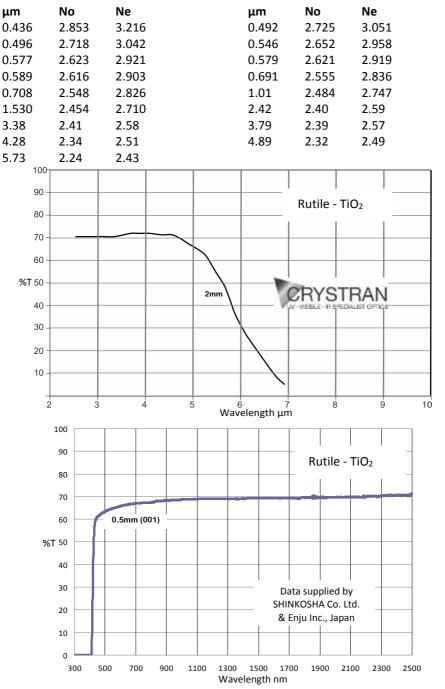
Rubidium Iodide (RbI)

μm	No	μm	No	μm	No
0.25	2.059	0.35	1.736	0.50	1.663
0.80	1.631	1.00	1.624	2.00	1.615
5.00	1.612	10.0	1.609	20.0	1.596
30.0	1.573	40.0	1.537	45.0	1.514
50.0	1.486	55.0	1.452	60.0	1.411

Rutile (TiO₂)

Rutile is grown by the Czochralski method typically up to 25mm diameter and up to 80mm long.

APPLICATIONS: Rutile is a high index material used mainly for optical coupling prisms and also as substrates for epitaxial growth.


Transmission Range 0.43 to 5.0μ mRefractive IndexNo 2.555 at 0.69μ m (1)(2)Reflection Loss 30% at 2μ m (2 surfaces)Absorption Coefficientn/aAbsorption Coefficientn/adn/dTn/adn/dTn/adn/dT1Density 4.252 g/ccMelting Point1840°CThermal Conductivity12.5 (para) 8.7 (perp) W m ⁻¹ K ⁻¹ Thermal Expansion 9.2 (para) 7.1 (perp) x 10^{-6} /°CHardnessKnoop 879 with 500g indenterSpecific Heat Capacity $711 J kg^1 K^{-1}$ Dielectric Constant160 at 1 MHzYoungs Modulus (E)n/aShear Modulus (G)n/aBulk Modulus (K)n/aElastic Coefficients $C_{11=269;C_{12}=177;C_{13}=146;C_{33}=480;C_{44}=124$ Apparent Elastic Limit4.8 MPa (700 psi)Poisson Ratio0.28SolubilityInsoluble in waterMolecular Weight79.9Class/StructureTetragonal, P42/mnm, (#136) Rutile Structure.		
Specific Heat Capacity $711 J kg^{-1} K^{-1}$ Dielectric Constant $160 at 1 MHz$ Youngs Modulus (E) n/a Shear Modulus (G) n/a Bulk Modulus (K) n/a Elastic Coefficients $C_{11}=269; C_{12}=177; C_{13}=146; C_{33}=480; C_{44}=124$ Apparent Elastic Limit $4.8 MPa (700 psi)$ Poisson Ratio 0.28 SolubilityInsoluble in waterMolecular Weight 79.9	Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT $dn/d\mu = 0$ Density Melting Point Thermal Conductivity Thermal Expansion	No 2.555 at 0.69µm (1)(2) 30% at 2µm (2 surfaces) n/a n/a 2.81µm 4.252 g/cc 1840°C 12.5 (para) 8.7 (perp) W m ⁻¹ K ⁻¹ 9.2 (para) 7.1 (perp) x 10 ⁻⁶ /°C
	Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility Molecular Weight	711 J kg ⁻¹ K ⁻¹ 160 at 1 MHz n/a n/a $C_{11}=269;C_{12}=177;C_{13}=146;C_{33}=480;C_{44}=124$ 4.8 MPa (700 psi) 0.28 Insoluble in water 79.9

(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544423-6

(2) Shenoy; 1EE Poceedings-J, Vol. 139, No. 2, Apr 1992

Rutile (TiO₂)

Sapphire (Al₂O₃)

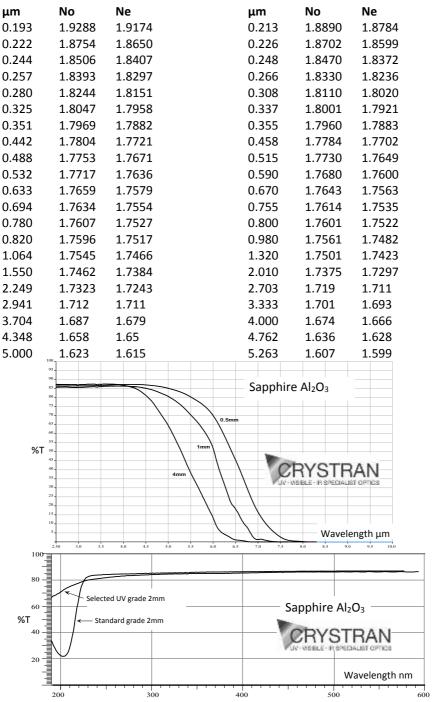
MATERIALS DATA

Sapphire is grown by a variety of methods. Verneuil and Czochralski methods are usual for standard grade Sapphire material. Higher quality Sapphire, particularly for electronic substrates is manufactured by Kyropulos growth and this can be very pure with excellent UV transmission. Large thin sheets of Sapphire can be made by ribbon growth. Sapphire is slightly birefringent, general purpose IR windows are usually cut in a random way from crystal but for specific applications where the birefringence is an issue, an orientation is selected. Usually this is with the optic axis at 90 degrees to the surface plane and is known as "zero degree" material. Synthetic optical sapphire has no colouration.

APPLICATIONS: Sapphire is used for its extreme toughness and strength. Sapphire is a very useful optical window material for use in the UV, visible, and near infra-red. Use the QR ink on page 30 for our guide to sapphire.

Transmission Range	0.17 to 5.5µm
Refractive Index	No 1.75449; Ne 1.74663 at 1.06µm (1)
Reflection Loss	14% at 1.06µm
Absorption Coefficient	0.3 x 10 ⁻³ cm ⁻¹ at 2.4μm (2)
Reststrahlen Peak	13.5µm
dn/dT	13.1 x 10 ⁻⁶ at 0.546µm (3)
dn/dµ = 0	1.5µm
Density	3.97 g/cc
Melting Point	2040°C
Thermal Conductivity	27.21 W m ⁻¹ K ⁻¹ at 300K
Thermal Expansion	5.6 (para) & 5.0 (perp) x 10 ⁻⁶ K ⁻¹ *
Hardness	Knoop 1800 (para) 2200 (perp)
Specific Heat Capacity	763 J Kg ⁻¹ K ⁻¹ at 293K (4)
Dielectric Constant	11.5 (para) 9.4 (perp) at 1MHz
Youngs Modulus (E)	335 GPa
Shear Modulus (G)	148.1 GPa
Bulk Modulus (K)	240 GPa
Elastic Coefficients	C_{11} =496 C_{12} =164 C_{13} =115 C_{33} =498 C_{44} =148
Apparent Elastic Limit	300 MPa (45,000 psi)
Poisson Ratio	0.25
Solubility	98 x 10 ⁻⁶ g/100g water
Molecular Weight	101.96
Class/Structure	Trigonal (hex), R3c

* Note that manufacturers appear to disagree at times on figures for thermal expansion.


⁽¹⁾ Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

⁽²⁾ Harrington et al, Appl.Opt. V15, 1953-1959 (1976)

⁽³⁾ Malitson, J.Opt.Soc.Am., V52, 1377-1379 (1962)

⁽⁴⁾ Ditmars, et. al., J. Res. Nat. Bur. Stand., 87, (2), 159-163 (1982).

Sapphire (Al₂O₃)

Silica Glass (SiO₂)

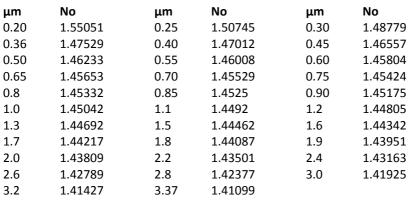
MATERIALS DATA

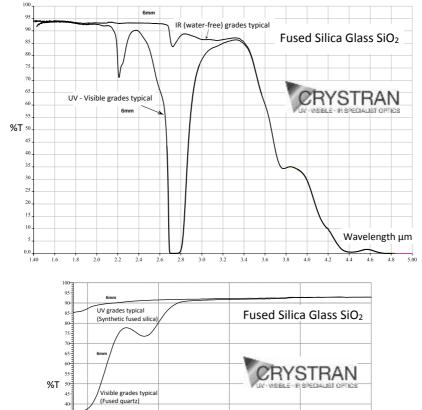
Fused Silica is the glassy form of Quartz and is thus isotropic. Fused Silica is tough and hard and has a very low expansion. Normal varieties of Fused Silica contain water which gives strong absorption in the Infra-red. Water-free varieties of Fused Silica are available.

APPLICATIONS: Fused Silica is a hard, high temperature pure glass. Fused Silica is used for UV and visible components. Infra-red grades of Fused Silica are available for NIR use. Use the QR link on page 30 for our guide to silica glass.

Transmission Range 0.18 to 2.2µm (3µm for IR grades) **Refractive Index** 1.47012 at 4µm (1) Reflection Loss 7.0% at 0.4µm (2 surfaces) Absorption Coefficient 10 x 10⁻⁶ cm⁻¹ at 1µm **Reststrahlen Peak** n/a dn/dT +12.9 x 10⁻⁶ K⁻¹ (2) $dn/d\mu = 0$ 1.3µm Density 2.203 g/cc 1600 °C (softening) * **Melting Point** Thermal Conductivity 1.38 W m⁻¹ K⁻¹ 0.55 x 10⁻⁶ K⁻¹ at 300K Thermal Expansion Hardness Knoop 500 with 200g indenter Specific Heat Capacity 703 J Kg⁻¹ K⁻¹ **Dielectric Constant** 3.78 at 25GHz 73.1 GPa Youngs Modulus (E) Shear Modulus (G) 31.2 GPa 36.7 GPa Bulk Modulus (K) Elastic Coefficients n/a Apparent Elastic Limit 55 MPa (7980 psi) **Poisson Ratio** 0.17 Solubility Insoluble in Water Molecular Weight 28.09 Class/Structure Amorphous glass

* The normal maximum working temperature is 1050°C




⁽¹⁾ Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6

⁽²⁾ Toyoda & Yabe J. Phys. D: Appl. Phys., 1 6 (1983)

Silica Glass (SiO₂)

MATERIALS DATA

93

Silicon (Si)

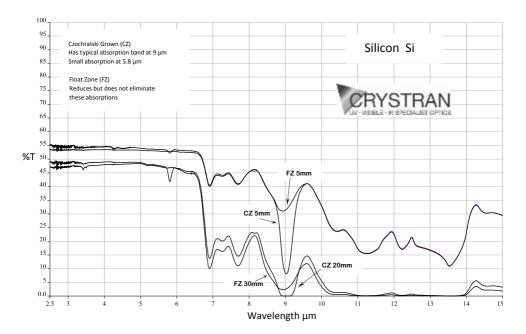
MATERIALS DATA

Silicon is grown by Czochralski pulling techniques (CZ) and contains some oxygen which causes an absorption band at 9 μ m. To avoid this, Silicon can be prepared by a Float-Zone (FZ) process. Optical Silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 μ m. Silicon has a further pass band 30 to 100 μ m which is effective only in very high resistivity uncompensated material. Doping is usually Boron (p-type) and Phosphorus (n-type).

APPLICATIONS: Silicon is used as an optical window primarily in the 3 to 5 micron band and as a substrate for production of optical filters. Large blocks of Silicon with polished faces are also employed as neutron targets in Physics experiments

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT $dn/d\mu = 0$ Density Melting Point Thermal Conductivity	1.2 to 15μ m and 30 to $>100\mu$ m (1) 3.4223 @ 5μ m (1) (2) 46.2% at 5μ m (2 surfaces) 0.01 cm ⁻¹ at 3μ m n/a 160 x 10^{-6} /°C (3) 10.4 μ m 2.33 g/cc 1420 °C 163.3 W m ⁻¹ K ⁻¹ at 273 K
Thermal Expansion	2.6 x 10 ⁻⁶ K ⁻¹ at 20°C
Hardness	Knoop 1150
Specific Heat Capacity	703 J Kg ⁻¹ K ⁻¹
Dielectric Constant	13 at 10 GHz
Youngs Modulus (E)	131 GPa (4)
Shear Modulus (G)	79.9 GPa (4)
Bulk Modulus (K)	102 GPa
Elastic Coefficients	C ₁₁ =167; C ₁₂ =65; C ₄₄ =80 (4)
Apparent Elastic Limit	124.1MPa (18000 psi)
Poisson Ratio	0.266 (4)
Solubility	Insoluble in Water
Molecular Weight	28.09
Class/Structure	Cubic diamond, Fd3m

(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6


⁽²⁾ Li, Refractive Index of Germanium etc, J.Phys Chem, V9, p561, 1980

⁽³⁾ Icenogle et al, Appl. Opt. V15, 2348 (1976)

⁽⁴⁾ Wortman & Evans, V36, (1), P153 (1965)

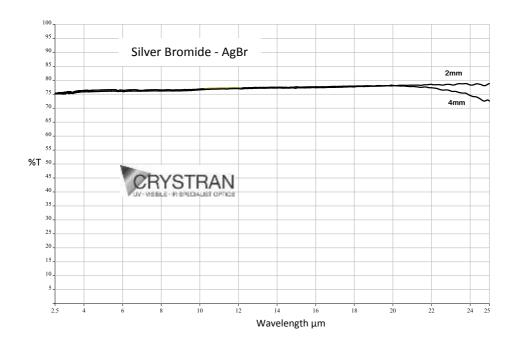
Silicon (Si)

μm	No	μm	No	μm	No
1.357	3.4975	1.367	3.4962	1.395	3.4929
1.5295	3.4795	1.660	3.4696	1.709	3.4664
1.813	3.4608	1.970	3.4537	2.153	3.4476
2.325	3.4430	2.714	3.4358	3.000	3.4320
3.303	3.430	3.500	3.4284	4.000	3.4257
4.258	3.4245	4.500	3.4236	5.000	3.4223
5.500	3.4213	6.000	3.4202	6.500	3.4195
7.000	3.4189	7.500	3.4186	8.000	3.4184
8.500	3.4182	10.00	3.4179	10.50	3.4178
11.04	3.4176				

Silver Bromide (AgBr)

Silver Bromide is grown in small ingots by sealed ampoule Stockbarger techniques. Silver Bromide is malleable and deep yellow, it darkens in sunlight, but less readily than Silver Chloride.

APPLICATIONS: Silver Bromide is useful material for very deep Infra Red applications where sensitivity to moisture is a problem. Silver Bromide crystal growth was developed relatively recently by the standards of many IR materials. The parameters of Silver Bromide have not been researched as thoroughly as those of Silver Chloride. This soft crystal deforms under heat and pressure and can be forged in polished dies to create Infra Red windows and lenses.


Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point	0.45 to 35μm (1) 2.167 at 10μm (1) (2) 23.9% at 10μm (2 surfaces) Not known 112.7μm Not known Not known 6.473 g/cc 432 °C
Thermal Conductivity	1.21 W m ⁻¹ K ⁻¹ at 273 K
Thermal Expansion	30 x 10 ⁻⁶ K ⁻¹ at 273 K
Hardness	Knoop 7
Specific Heat Capacity	292 J Kg ⁻¹ K ⁻¹
Dielectric Constant	13.1 at 1MHz (2)
Youngs Modulus (E)	31.97 GPa
Shear Modulus (G)	Not Known
Bulk Modulus (K)	44.03 GPa
Elastic Coefficients	C ₁₁ =56.3 C ₁₂ =32.3 C ₄₄ =7.25
Apparent Elastic Limit	26.2 MPa
Poisson Ratio	Not Known
Solubility	12 x 10⁻⁵g/100g water at 20°C
Molecular Weight	187.78
Class/Structure	Cubic FCC, NaCl, Fm3m, No cleavage, cold flows

⁽¹⁾ Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

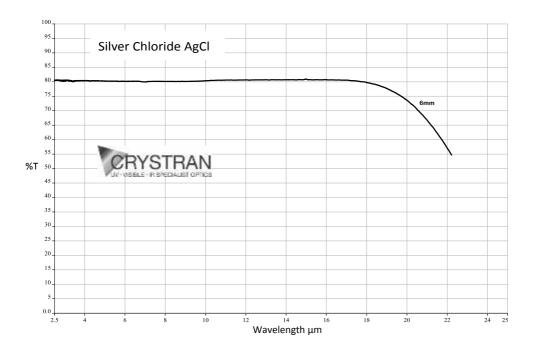
⁽²⁾ White; Optical Properties of Silver Bromide. J.Opt. Soc. Am. V62, N2, (1973)

Silver B	romide (AgBr)			I	MATERIALS DATA
μm	No	μm	No	μm	Νο
0.391	2.416	0.477	2.33	0.496	2.313
0.55	2.27	0.6	2.25	0.65	2.24
0.781	2.205	9.926	2.167	12.66	2.162

Silver Chloride (AgCl)

Silver Chloride is grown into small ingots by the sealed-ampoule Stockbarger techniques. Silver chloride is malleable and milky-white it darkens in sunlight, but mild darkening does not affect the IR performance.

APPLICATIONS: Silver Chloride is a useful material for deep IR applications where sensitivity to moisture is a problem. This soft crystal deforms under heat and pressure and can be forged in polished dies to create IR windows and lenses. A major use for Silver Chloride is in the manufacture of small disposable cell windows for spectroscopy, known as mini-cells. These windows have a depression of controlled thickness pressed into the surface. The inherent cost of Silver Chloride material is offset against ease of manufacture.


Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/d μ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients	0.4 to $25\mu m (1)$ 1.98 at $10\mu m (1)$ 19.5% at $10\mu m (2 \text{ surfaces})$ n/a 81.5 μm -61 x 10^{-6} K^{-1} 4.5 μm 5.59 g/cc 457 °C 1.15 W m ⁻¹ K ⁻¹ at 278 K 31 x 10^{-6} K^{-1} at 302 K Knoop 9.5 with 200g indenter 355 J Kg ⁻¹ K ⁻¹ 12.3 at 1MHz 19.98 GPa 7.099 GPa 44.04 GPa C ₁₁ =60.1 C ₁₂ =36.2 C ₄₄ =6.25 26 2MPa (3800 pci)
Apparent Elastic Limit	26.2MPa (3800 psi)
Poisson Ratio	0.4
Solubility	52 x 10 ⁻⁶ g/100g water at 50°C
Molecular Weight	143.34
Class/Structure	Cubic FCC, NaCl, Fm3m, No cleavage, cold flows

(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

Silver Chloride (AgCl)

μm	No	μm	No	μm	No
0.500	2.09658	1.000	2.02239	1.500	2.01047
2.000	2.00615	2.500	2.00386	3.000	2.0023
3.500	2.00102	4.000	1.99983	4.500	1.99866
5.000	1.99745	5.500	1.99618	6.000	1.99483
6.500	1.99339	7.000	1.99185	7.500	1.99021
8.000	1.98847	8.500	1.98661	9.000	1.98464
9.500	1.98255	10.00	1.98034	10.50	1.97801
11.00	1.97556	11.50	1.97297	12.00	1.97026
12.50	1.96742	13.00	1.96444	13.50	1.96133
14.00	1.95807	14.50	1.95467	15.00	1.95113
15.50	1.94743	16.00	1.94358	16.50	1.93958
17.00	1.93542	17.50	1.93109	18.00	1.9266
18.50	1.92194	19.00	1.91710	19.50	1.91208
20.00	1.90688	20.50	1.90149		

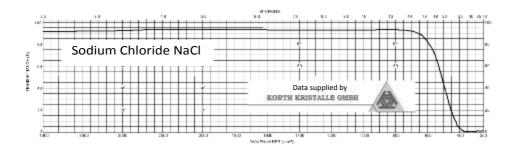
Sodium Chloride (NaCl)

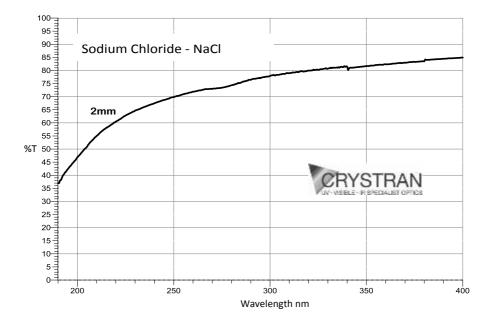
MATERIALS DATA

Sodium Chloride is produced in large ingots by the Kyropoulos growth method. Sodium Chloride cleaves easily. With care Sodium Chloride can be polished to a high standard under humidity controlled conditions

APPLICATIONS: Sodium Chloride, common rock salt, is one of the most useful materials for general purpose spectroscopic windows and applications where sensitivity to moisture is unimportant.

Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Rupture Modulus Poisson Ratio Solubility Molecular Weight	0.2 to 15μ m 1.49065 at 10.6μ m (2 surfaces) 7 x 10^{-6} cm ⁻¹ at 1.06μ m (1) 50.1 μ m -40.83 x 10^{-6} K ⁻¹ n/a 2.17 g/cc 801 °C 1.15 W m ⁻¹ K ⁻¹ at 273K 44 x 10^{-6} K ⁻¹ Knoop 18.2 in <100> with 200g indenter 854 J Kg ⁻¹ K ⁻¹ 5.9 at 1MHz 39.98 GPa 12.61 GPa 24.42 GPa C ₁₁ =48.5; C ₁₂ =12.3; C ₄₄ =12.61 3.9 MPa (560 psi) (2) 0.252 35.7g/100g water at 273K 58.45
Solubility Molecular Weight	
Class/Structure	Cubic FCC, NaCl, Fm3m (#221), (100) cleavage


(1) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980


(2) Combes, et.al.; J.Opt. Soc. Am. V41, p215, 1951.

Sodium Chloride (NaCl)

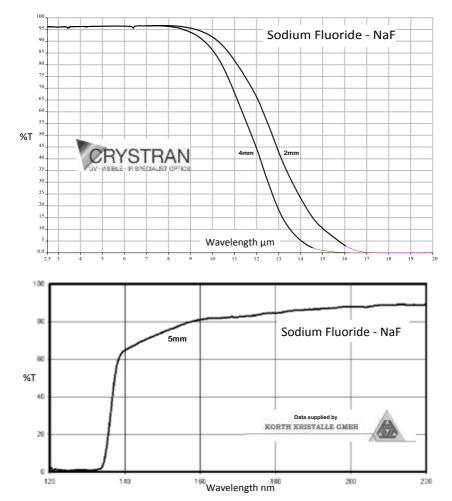
μm	No	μm	No	μm	No
0.589	1.54427	0.640	1.54141	0.760	1.53682
0.884	1.53395	0.972	1.53253	1.054	1.53153
1.555	1.53815	2.074	1.52736	9.000	1.501
9.500	1.4998	10.60	1.49065	11.40	1.48476
12.50	1.47568	13.50	1.4666	14.60	1.45572
16.00	1.4399	17.80	1.41649	19.80	1.38559
20.57	1.3735	22.30	1.3403		

Sodium Fluoride (NaF)

MATERIALS DATA

Sodium Fluoride is produced by vacuum Stockbarger techniques. The Sodium Fluoride is very difficult to anneal and cleaves readily limiting the useful size of pieces to about 80mm. Sodium Fluoride polishes well but must be kept in dry air to maintain the quality of the surfaces and retain the deep UV transmission needed for Cerenkov radiation from this material.

APPLICATIONS: Sodium Fluoride has the lowest refractive index of all common optical materials which makes it of interest as a Cerenkov radiator in Particle Physics research. Crystran Ltd. has supplied Sodium Fluoride material which has been made into large arrays at CERN. It is used in Ring Imaging Cerenkov Counters (RICH)


Transmission Range Refractive Index Reflection Loss Absorption Coefficient Reststrahlen Peak dn/dT dn/dµ = 0 Density Melting Point Thermal Conductivity Thermal Expansion Hardness Specific Heat Capacity Dielectric Constant Youngs Modulus (E) Shear Modulus (G) Bulk Modulus (K) Elastic Coefficients Apparent Elastic Limit Poisson Ratio Solubility	0.14 to 11 μ m 1.3255 at 0.6 μ m 3.9% at 0.6 μ m 1 x 10 ⁻³ cm ⁻¹ at 7 μ m @ 300K (1) 35.8 μ m -13 x 10 ⁻⁶ K ⁻¹ at 293K 1.7 μ m 2.79 g/cc @20°C 980°C 3.746 W m ⁻¹ K ⁻¹ at 273K 36 x 10 ⁻⁶ /K at 300K Knoop 60 in <100> 1088 J Kg ⁻¹ K ⁻¹ 6 at 1 MHz 79.01 GPa 12.70 GPa 47.9 GPa C ₁₁ =79.01; C ₁₂ =12.7; C ₄₄ =47.9 3.2 MPa (Estimated) 0.326 4.22g/100g water at 18°C
	· · ·
Molecular Weight	42.0
Class/Structure	Cubic FCC, NaCl, Fm3m, (100) cleavage

(1) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

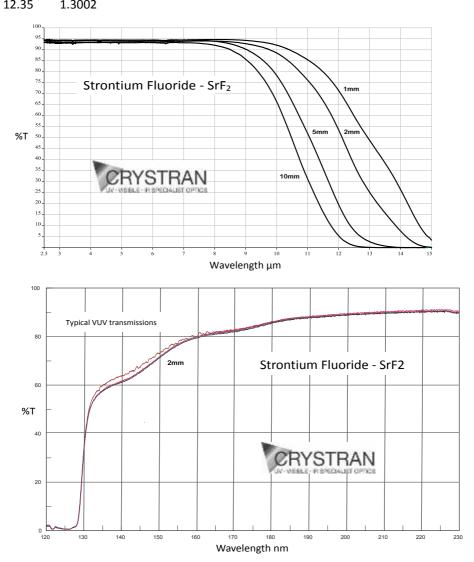
Sodium Fluoride (NaF)

μm	No	μm	No	μm	No
0.140	1.55	0.145	1.499	0.161	1.438
0.175	1.410	0.186	1.393	0.199	1.3805
0.203	1.3772	0.302	1.34232	0.405	1.33194
0.486	1.32818	0.546	1.3264	0.589	1.32549
0.707	1.32372	0.811	1.32272	0.912	1.32198
1.014	1.3215	2.000	1.3170	3.100	1.313
4.100	1.308	5.100	1.301	6.100	1.292
7.100	1.281	8.100	1.269	9.100	1.252
10.30	1.233	11.30	1.209	12.50	1.18
13.80	1.142	15.10	1.093	16.70	1.029

Strontium Fluoride (SrF₂)

Strontium fluoride is produced by the vacuum Stockbarger growth technique.

APPLICATIONS: Strontium Fluoride has only specialist applications. Optically, Strontium Fluoride has properties intermediate to Calcium and Barium Fluoride.


Transmission Range	0.15 to 11µm
Refractive Index	1.439 at 0.55μm (1)
Reflection Loss	6.3% at 0.55μm (2 surfaces)
Absorption Coefficient	<1 x 10 ⁻³ cm ⁻¹ at 5µm
Reststrahlen Peak	46µm
dn/dT	-12 x 10 ⁻⁶ K ⁻¹
$dn/d\mu = 0$	n/a
Density	4.24 g/cc
Melting Point	1450°C
Thermal Conductivity	1.42 W m ⁻¹ K ⁻¹ at 298K
Thermal Expansion	18.4 x 10 ⁻⁶ K ⁻¹ at 293K
Hardness	Knoop 154 (100) & 140 (110)
Specific Heat Capacity	543 J Kg ⁻¹ K ⁻¹
Dielectric Constant	7.69 at 2 MHz
Youngs Modulus (E)	89.91 GPa
Shear Modulus (G)	34.6 GPa
Bulk Modulus (K)	24.65 GPa
Elastic Coefficients	C ₁₁ =124; C ₁₂ =45; C ₄₄ =31.7
Apparent Elastic Limit	36.5 MPa (5300 psi)
Poisson Ratio	0.25
Solubility	0.012g/100g water at 27°C
Molecular Weight	125.62
Class/Structure	Cubic Fm3m (#225) Fluorite structure
	Cleaves on (111)

(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

Strontium Fluoride (SrF₂)

μm	No	μm	No	μm	No
0.15	1.594	0.20	1.504	0.31	1.45725
0.41	1.44556	0.51	1.44029	0.61	1.43740
0.71	1.43560	0.81	1.43435	0.91	1.43343
1.01	1.43269	1.51	1.43003	2.01	1.42761
3.01	1.42159	4.01	1.41337	5.01	1.40269
6.01	1.38934	7.01	1.37308	8.01	1.35362
9.1	1.3283	10.1	1.3800	11.1	1.2686
12 25	1 2002				

Thallium Bromide (TIBr)

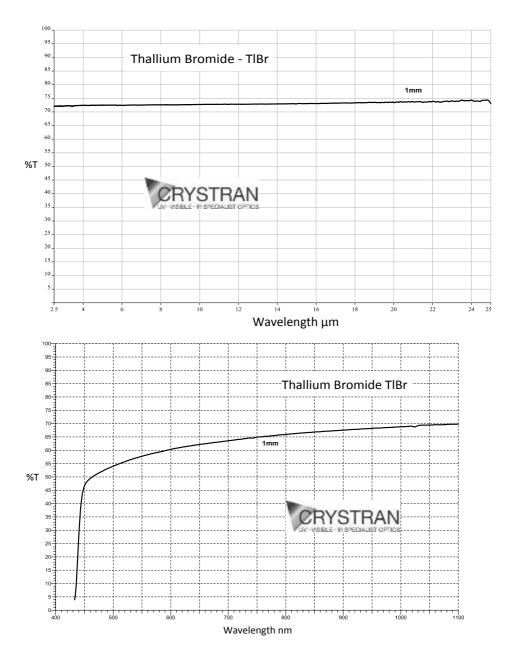
MATERIALS DATA

CAUTION: Thallium salts are considered TOXIC and should be handled with care.

Thallium Bromide crystals are grown by sealed-ampoule Stockbarger technique. Thallium salts are toxic, and Thallium Bromide has enough solubility to require extreme caution. Careful handling with plastic gloves covered with soft cotton gloves as appropriate to delicate optics is required.

APPLICATIONS: Thallium Bromide has little practical application.

Transmission Range	0.5 to 40μm
Refractive Index	2.338 at 10μm (1)
Reflection Loss	27.7% at 10μm
Absorption Coefficient	n/a
Reststrahlen Peak	172μm
dn/dT	n/a
$dn/d\mu = 0$	8.5μm
Density	7.453 g/cc (1)
Melting Point	460.5 °C (1)
Thermal Conductivity	0.586 W m ⁻¹ K ⁻¹ at 343K
Thermal Expansion	51 x 10 ⁻⁶ K ⁻¹ at 300K
Hardness	Knoop 11.9 with 500g indenter
Specific Heat Capacity	188 J Kg ⁻¹ K ⁻¹ (3)
Dielectric Constant	30.3 at 1 MHz
Youngs Modulus (E)	29.5 GPa (2)
Shear Modulus (G)	7.58 GPa (2)
Bulk Modulus (K)	22.47 Gpa (2)
Elastic Coefficients	C ₁₁ =37.8; C ₁₂ =14.8; C ₄₄ =7.56 (2)
Apparent Elastic Limit	20.7 MPa (3000 psi)
Poisson Ratio	0.281
Solubility	0.05g/100g water ar 25°C
Molecular Weight	248.31
Class/Structure	Cubic CsCl, Pm3m, no cleavage (1)


⁽¹⁾ Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

⁽²⁾ Arenberg, Measurements made at Naval Research Labs, USA 1948-49

⁽³⁾ Kelly, Bureau of Mines Bulletin, No 371, p51. 1934

Thallium Bromide (TIBr)

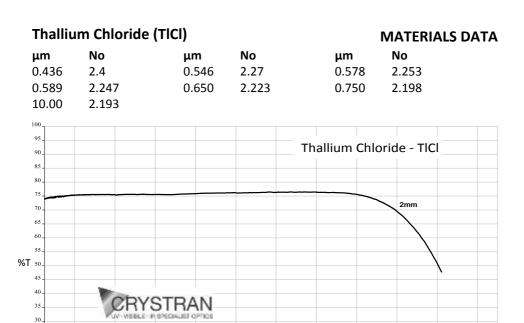
μm	Νο	μm	No	μm	No
0.438	2.652	0.546	2.452	0.578	2.424
0.650	2.384	0.750	2.350	10.00	2.338

Thallium Chloride (TICI)

MATERIALS DATA

CAUTION: Thallium salts are considered TOXIC and should be handled with care.

Thallium Chloride crystals are grown by sealed-ampoule Stockbarger technique. Thallium salts are toxic, and Thallium Chloride has enough solubility to require extreme caution. Careful handling with plastic gloves covered with soft cotton gloves as appropriate to delicate optics is required


APPLICATIONS: Thallium Chloride has little practical application.

Transmission Range	0.5 to 30µm
Refractive Index	2.193 at 10µm (1)
Reflection Loss	24.5% at 10µm (2 surfaces)
Absorption Coefficient	n/a
Reststrahlen Peak	131µm
dn/dT	n/a
dn/dμ = 0	3.5µm
Density	7.018 g/cc (1)
Melting Point	430.2 °C (1)
Thermal Conductivity	0.75 W m ⁻¹ K ⁻¹ at 311K
Thermal Expansion	53 x 10 ⁻⁶ K ⁻¹ at 300K
Hardness	Knoop 12.8 with 500g indenter
Specific Heat Capacity	218 J Kg ⁻¹ K ⁻¹
Dielectric Constant	31.9 at 1 MHz
Youngs Modulus (E)	31.71 Gpa (2)
Shear Modulus (G)	7.58 GPa (2)
Bulk Modulus (K)	23.57 Gpa (2)
Elastic Coefficients	C ₁₁ =40.1; C ₁₂ =15.3; C ₄₄ =7.6 (2)
Apparent Elastic Limit	20.7 MPa (3000 psi)
Poisson Ratio	0.276
Solubility	0.32g/100g water at 20°C
Molecular Weight	239.85
Class/Structure	Cubic CsCl, Pm3m, no cleavage planes (1)

⁽¹⁾ Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

⁽²⁾ Arenberg, Measurements made at Naval Research Labs, USA 1948-49

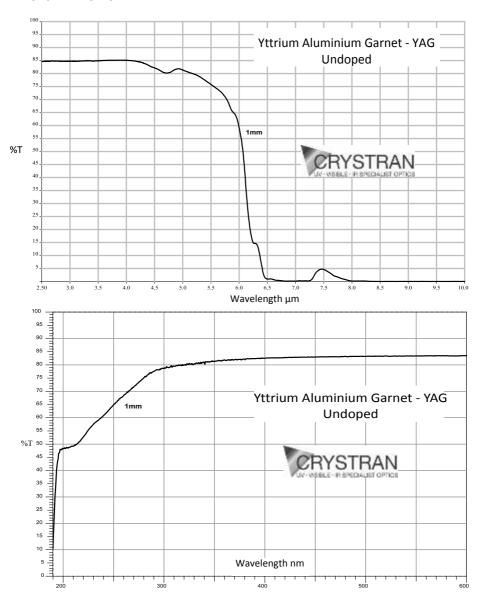
Wavelength µm

24 25

Yttrium Aluminium Garnet (YAG)

YAG crystal is produced by the Czochralski growth process up to approximately 100mm diameter.

APPLICATIONS: YAG (Yttrium aluminium oxide $Y_3AI_5O_{12}$) is an active laser crystal when dopants such as Nd, Tm, Er, and Cr are used. Being cubic there is no double refraction and it is sometimes used for a window material substituting for sapphire.


⁽¹⁾ Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

⁽²⁾ Wilson, Thermo-Optic Coefficients. PhD dissertation. U Southern Calif. Jan 1980

Yttrium Aluminium Garnet (YAG)

MATERIALS DATA

μm	No	μm	No	μm	No
0.266	1.9278	0.354	1.8725	0.532	1.8368
0.800	1.8245	0.808	1.8217	0.946	1.8186
1.030	1.8173	1.064	1.8169	1.333	1.8146
1.444	1.8140	1.500	1.8137	1.640	1.8132
2.014	1.8123	2.097	1.8121	2.123	1.8121
2.940	1.8113				

Zinc Selenide (ZnSe)

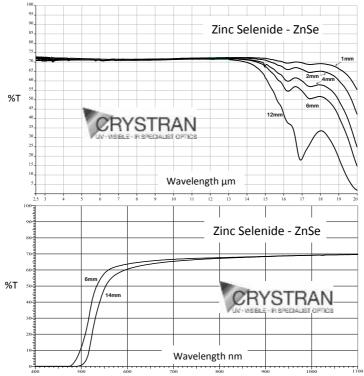
MATERIALS DATA

Zinc Selenide is produced by synthesis from Zinc vapour and H_2Se gas, forming as sheets on a graphite substrate. Zinc Selenide is microcrystalline in structure, the grain size being controlled to produce maximum strength. Single crystal ZnSe is available, but is not common but has been reported as having lower absorption and thus more effective for CO_2 optics.

APPLICATIONS: ZnSe is used widely for IR components, windows and lenses, and for spectroscopic ATR prisms. Zinc Selenide is one of the materials of choice for CO_2 laser optics operating at $10.6 \mu m$.

Transmission Range Refractive Index	0.6 to 21.0μm 2.4028 at 10.6μm
Reflection Loss	29.1% at 10.6µm (2 surfaces)
Absorption Coefficient	0.0005 cm^{-1} at $10.6 \mu \text{m}$
Reststrahlen Peak	45.7µm
dn/dT	+61 x 10 ⁻⁶ K ⁻¹ at 10.6μm at 298K
$dn/d\mu = 0$	5.5μm
Density	5.27 g/cc
Melting Point	1525°C *See notes below
Thermal Conductivity	18 W m ⁻¹ K ⁻¹ at 298K
Thermal Expansion	7.1 x 10 ⁻⁶ K ⁻¹ at 273K
Hardness	Knoop 120 with 50g indenter
Specific Heat Capacity	339 J Kg ⁻¹ K ⁻¹
Dielectric Constant	n/a
Youngs Modulus (E)	67.2 GPa
Shear Modulus (G)	n/a
Bulk Modulus (K)	40 GPa
Elastic Coefficients	Not Available
Apparent Elastic Limit	55.1 MPa (8000 psi) (1)
Poisson Ratio	0.28
Solubility	0.001g/100g water
Molecular Weight	144.33
Class/Structure	FCC Cubic, F43m (#216), Zinc Blende Structure (Polycrystalline)

* Zinc Selenide oxidizes significantly at 300°C, exhibits plastic deformation at about 500°C and dissociates about 700°C. For safety, Zinc Selenide windows should not be used above 250°C in normal atmosphere



(1) Manufacturing Methods program ZnSe blanks. US Army R&D Feb 1980

Zinc Selenide (ZnSe)

MATERIALS DATA

μm	No	μm	No	μm	No
0.54	2.6754	0.58	2.6312	0.62	2.5994
0.66	2.5755	0.7	2.5568	0.74	2.5418
0.78	2.5295	0.82	2.5193	0.86	2.5107
0.90	2.5034	0.94	2.4971	0.98	2.4916
1.0	2.4892	1.4	2.4609	1.8	2.4496
2.2	2.4437	2.6	2.4401	3.0	2.4376
3.4	2.4356	3.8	2.4339	4.2	2.4324
4.6	2.4309	5.0	2.4295	5.4	2.4281
5.8	2.4266	6.2	2.4251	6.6	2.4235
7.0	2.4218	7.4	2.4201	7.8	2.4183
8.2	2.4163	8.6	2.4143	9.0	2.4122
9.4	2.4100	9.8	2.4077	10.2	2.4053
10.6	2.4028	11.0	2.4001	11.4	2.3974
11.8	2.3945	12.2	2.3915	12.6	2.3883
13.0	2.3850	13.4	2.3816	13.8	2.3781
14.2	2.3744	14.6	2.3705	15.0	2.3665
15.4	2.3623	15.8	2.3579	16.2	2.3534
16.6	2.3487	17.0	2.3438	17.4	2.3387
17.8	2.3333	18.2	2.3278		

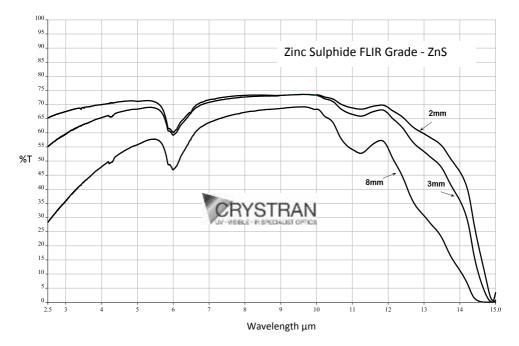
Zinc Sulphide FLIR (ZnS)

MATERIALS DATA

Zinc Sulphide is produced by synthesis from Zinc vapour and H_2S gas, forming as sheets on a graphite substrate. Zinc Sulphide is microcrystalline in structure, the grain size being controlled to produce maximum strength. Forward Looking Infra-Red (FLIR) grade, which is pale yellow and translucent in the visible, is used as deposited without further treatment. It is stronger than multispectral grade. Single crystal ZnS is available, but is not common.

APPLICATIONS: ZnS FLIR is used for IR windows and lenses in the thermal band (8 to $14\mu m$) as a tough front optic in thermal imaging systems, particularly those subjected to harsh environments.

Transmission Range	1.0 to 13μm
Refractive Index	2.192 at 10.6μm
Reflection Loss	24.6% at 10.6μm (2 surfaces)
Absorption Coefficient	0.02 cm ⁻¹ at 3.8μm
Reststrahlen Peak	30.5µm
dn/dT	+43 x 10 ⁻⁶ K ⁻¹ at 3.39μm
$dn/d\mu = 0$	n/a
Density	4.08 g/cc
Melting Point	1827°C *See notes below
Thermal Conductivity	16.7 W m ⁻¹ K ⁻¹ at 296K
Thermal Expansion	6.6 x 10 ⁻⁶ K ⁻¹ at 273K
Hardness	Knoop 160 with 50g indenter
Specific Heat Capacity	469 J Kg ⁻¹ K ⁻¹
Dielectric Constant	n/a
Youngs Modulus (E)	74.5 GPa
Shear Modulus (G)	n/a
Bulk Modulus (K)	n/a
Elastic Coefficients	Not Available
Apparent Elastic Limit	103.4 MPa (15,000 psi)
Poisson Ratio	0.29
Solubility	65 x 10 ⁻⁶ g/100g water
Molecular Weight	97.43
Class/Structure	Polycrystalline cubic, ZnS, F43m


* Zinc Sulphide oxidises significantly at 300°C, exhibits plastic deformation at about 500°C and dissociates about 700°C. For safety, Zinc Sulphide windows should not be used above 250°C in normal atmosphere.

Zinc Sulphide FLIR (ZnS)

MATERIALS DA	TΑ
--------------	----

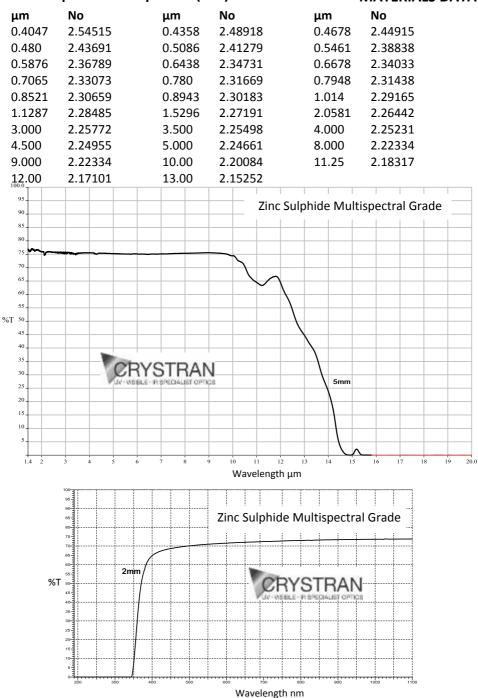
	•	-			
μm	No	μm	No	μm	No
0.42	2.516	0.46	2.458	0.50	2.419
0.54	2.391	0.58	2.371	0.62	2.355
0.66	2.342	0.70	2.332	0.74	2.323
0.78	2.316	0.82	2.31	0.86	2.305
0.90	2.301	0.94	2.297	0.98	2.294
1.00	2.292	1.40	2.275	1.80	2.267
2.20	2.263	2.60	2.26	3.00	2.257
3.40	2.255	3.80	2.253	4.20	2.251
4.60	2.248	5.00	2.246	5.40	2.244
5.80	2.241	6.20	2.238	6.60	2.235
7.00	2.232	7.40	2.228	7.80	2.225
8.20	2.221	8.60	2.217	9.00	2.212
9.40	2.208	9.80	2.203	10.2	2.198
10.6	2.192	11.0	2.186	11.4	2.18
11.8	2.173	12.2	2.167	12.6	2.159
13.0	2.152	13.4	2.143	13.8	2.135
14.2	2.126	14.6	2.116	15.0	2.106
15.4	2.095	15.8	2.084	16.2	2.072
16.6	2.059	17.0	2.045	17.4	2.03
17.8	2.015	18.2	1.998		

Zinc Sulphide Multispectral (ZnS)

MATERIALS DATA

Zinc Sulphide is produced by synthesis from Zinc vapour and H_2S gas, forming as sheets on a graphite substrate. Zinc Sulphide is microcrystalline in structure, the grain size being controlled to produce maximum strength. Multispectral grade is then Hot Isostatically Pressed (HIP) to improve the mid IR transmission and produce the visibly clear form. Single crystal ZnS is available, but is not common.

APPLICATIONS: ZnS Multispectral (water-clear) is used for IR windows and lenses in the thermal band (8 to 14μ m) where maximum transmission and lowest absorption is required. Also selected for use where visible alignment is an advantage.


Transmission Range 0.37 to 13.5µm Refractive Index 2.20084 at 10µm **Reflection Loss** 24.7% at 10µm (2 surfaces) 0.0006 cm⁻¹ at 3.8µm Absorption Coefficient **Reststrahlen Peak** 30.5µm +38.7 x 10⁻⁶ K⁻¹ at 3.39μm dn/dT $dn/d\mu = 0$ n/a 4.09 g/cc Density Melting Point 1827°C *See notes below Thermal Conductivity 27.2 W m⁻¹ K⁻¹ at 298K 6.5 x 10⁻⁶ K⁻¹ at 273K **Thermal Expansion** Knoop 240 with 50g indenter Hardness Specific Heat Capacity 515 J Kg⁻¹ K⁻¹ **Dielectric Constant** 88 Youngs Modulus (E) 74.5 GPa Shear Modulus (G) n/a Bulk Modulus (K) n/a **Elastic Coefficients** Not Available Apparent Elastic Limit 68.9 MPa (10,000 psi) Poisson Ratio 0.28 Solubility 65 x 10⁻⁶ g/100g water Molecular Weight 97.43 Class/Structure HIP polycrystalline cubic, ZnS, F42m

* Zinc Sulphide oxidizes significantly at 300°C, exhibits plastic deformation at about 500°C and dissociates about 700°C. For safety, Zinc Sulphide windows should not be used above 250°C in normal atmosphere.

Zinc Sulphide Multispectral (ZnS)

MATERIALS DATA

Fundamental Constants

An abbreviated list of the CODATA recommended values of the fundamental constants of physics and chemistry based on the 2014 adjustment.

Quantity	Symbol	Value	Uncert
Speed of light in vacuum	C, Co	299 792 458 m s ^{−1}	(exact)
Magnetic constant	μο	$4\pi \times 10^{-7} \text{ N A}^{-2}$	(exact)
Electric constant $1/\mu_0 c^2$	ε٥	8.854 187 817 × 10 ⁻¹² F m ⁻¹	(exact)
Gravitational Constant	G	$6.674\ 08(31) \times 10^{-11}\ \text{m}^3\ \text{kg}^{-1}\ \text{s}^{-2}$	4.7×10 ⁻⁵
Planck constant	h	$6.626\ 070040(81) imes 10^{-34}\ J\ s$	1.2×10 ⁻⁸
h/2π	ħ	1.054 571 800(13) × 10 ⁻³⁴ J s	1.2×10 ⁻⁸
Elementary charge	e	1.602 176 6208(98) × 10 ⁻¹⁹ C	6.1×10 ⁻⁹
Magnetic flux quantum h/2e	φo	2.067 833 831(13) × 10 ⁻¹⁵ Wb	6.1×10 ⁻⁹
Conductance quantum 2e ² /h	Go	7.748 091 7310(18) × 10 ⁻⁵ S	2.3×10 ⁻¹⁰
Electron mass	m _e	9.109 383 56(11) × 10 ⁻³¹ kg	1.2×10 ⁻⁸
Proton mass	m _p	1.672 621 898(21) × 10 ⁻²⁷ kg	1.2×10 ⁻⁸
Fine-structure const e²/4πε₀ħc	α	7.297 352 5664(17) × 10 ⁻³	2.3x10 ⁻¹⁰
Inverse fine-structure constant	α-1	137.035 999 139(31)	2.3×10 ⁻¹⁰
Rydberg constant $\alpha^2 m_e c/2h$	R∞	10 973 731.568 508(65) m ⁻¹	5.9×10 ⁻¹²
Avogadro constant	N _A , L	6.022 140857(74) × 10 ²³ mol ⁻¹	1.2×10 ⁻⁸
Faraday constant N _A e	F	96 485.33289(59) C mol⁻¹	6.2×10 ⁻⁹
Molar gas constant	R	8.314 459 8(48) J mol⁻¹ K⁻¹	5.7×10 ⁻⁷
Boltzmann constant R/N _A	k	$1.380~648~52(79) \times 10^{-23} \text{ J K}^{-1}$	5.7×10 ⁻⁷
Stefan-Boltzmann constant ($\pi^2/60$)k ⁴ /h ³	c² σ	5.670 367(13) × 10 ⁻⁸ W m ⁻² K ⁻⁴	2.3×10 ⁻⁶

Non-SI units accepted for use with the SI

Electron volt: (e/C) J	eV	1.602 176 620 8(98) × 10 ⁻¹⁹ J	6.1×10 ⁻⁹
(unified) atomic mass unit $\frac{1}{12}$ m (¹² C)	u	1.660 539 040(20) × 10 ⁻²⁷ kg	1.2×10 ⁻⁸

CODATA Recommended Values of the Fundamental Physical Constants: 2014 Peter J. Mohr, Barry N. Taylor, and David B. Newell, NIST, USA (25/06/2015)

Original photograph of crystals and crystal products by John Etches 1983

1 Broom Road Business Park, Poole, Dorset BH12 4PA UK **Tel:** +44 (0) 1202 307650 **Fax:** +44 (0) 1202 307651 **Email:** <u>sales@crystran.co.uk</u> **Website:** <u>www.crystran.co.uk</u>